
 Version 0.6b
May 22, 2001

NIST DASE PROTOTYPE IMPLEMENTATION

PAE IMPLEMENTATION GUIDE

NOTE: This document is considered a DRAFT version and may not be correct in all
aspects regarding the current NIST DASE Prototype Implementation. This document
is for informational purposes only and may not be redistributed. The final, up-to-
date version of this document will have a version number of 1.0 or higher.

 II

1. INTRODUCTION.. 1
2. DEFINITION OF TERMS.. 1

2.1 Acronyms and Abbreviations.. 1
2.2 Terms ... 2

3. API IMPLEMENTATION MAPPINGS AND STATUS... 3
3.1 Status Table Guidelines ... 3
3.2 DASE API Implementation Status ... 3

4. DEVELOPMENT ENVIRONMENT... 5
5. SYSTEM DESIGN.. 6

5.1 Introduction ... 6
5.2 NIST DASE Development Environment Components... 6

5.2.1 Introduction .. 6
5.2.2 Overview of the STB Simulation.. 7
5.2.3 Hardware Abstraction Layer Overview.. 8
5.2.4 DASE API Overview .. 9

6. THE STB SIMULATION... 10
6.1 Introduction ... 10
6.2 The Native Code Components... 11

6.2.1 The Simulation Control Program ... 11
6.2.2 Program Clock Reference Manager .. 11
6.2.3 The Bitstream Parser... 13

6.3 Java Components ... 13
6.3.1 The Manager Classes ... 16
6.3.2 Input Stream Parsers... 16
6.3.3 The Datatype Classes ... 17
6.3.4 Other Classes.. 18

6.4 PSIP Table Management in the Simulation .. 18
6.4.1 PSIP Table Classes... 19
6.4.2 Virtual Channel Table Example... 21

6.5 Data Broadcast Management .. 23
6.5.1 Data Broadcast Overview.. 24
6.5.2 Simulation Management of Data Broadcast.. 27

6.6 JMF... 28
6.6.1 Hardware Simulation ... 28
6.6.2 MPEGDecoderManager .. 28
6.6.3 PCRManagerPullSourceStream.. 29
6.6.4 DataSource.. 29
6.6.5 Handler .. 29
6.6.6 DAVIC Controls ... 29

7. REAL-TIME EMULATION.. 30
8. COMMERCIAL STB .. 31
9. HARDWARE ABSTRACTION LAYER .. 32

9.1 Introduction ... 32
9.2 STB Environment.. 33
9.3 HAL Data Manager .. 33
9.4 MPEG/PSIP Table Management... 33

9.4.1 Introduction .. 33
9.4.2 Virtual Channels .. 34
9.4.3 Data Services .. 34
9.4.4 Event Information .. 34
9.4.5 Rating Information ... 34
9.4.6 Descriptors... 35
9.4.7 Extended Text Messages .. 35

9.5 Data Broadcast.. 35

 III

9.5.1 Description of Data Broadcast Classes in the HAL... 36
9.6 Application Management ... 38

9.6.1 Introduction .. 39
9.6.2 Xlet Management Classes... 40
9.6.3 Xlet Resource Loading .. 41

9.7 JMF Player ... 41
9.7.1 Abstract Decoder ... 41
9.7.2 Java Interfaces .. 43

10. API IMPLEMENTATION .. 45
10.1 Locators ... 45
10.2 The Management API.. 47
10.3 Service APIs... 48

10.3.1 Overview.. 48
10.3.2 Asynchronous Service Information Retrieval .. 48
10.3.3 Package javax.tv.service ... 48
10.3.4 Package javax.tv.service.guide ... 49
10.3.5 Package javax.tv.service.navigation ... 51
10.3.6 Package javax.tv.service.selection.. 52
10.3.7 Package javax.tv.service.transport.. 56

10.4 User and Preference Management .. 58
10.4.1 User Registry... 59
10.4.2 User and Preferences Classes in the HAL.. 60
10.4.3 Preference Registry and Preference ... 61

10.5 Application (Xlet) Implementation... 63
10.5.1 Packages javax.tv.xlet and org.atsc.application.. 63

10.6 Data Broadcast API... 65
10.6.1 Introduction .. 65
10.6.2 Background.. 66
10.6.3 Data Service Announcement... 66
10.6.4 Data Broadcast API Implementation Mappings... 67
10.6.5 Issues and Notes... 68
10.6.6 Data Service Access ... 69

10.7 System and TV Graphics API... 71
10.8 The Networking API .. 72
10.9 The Registry API ... 73
10.10 The Document Object Model (DOM) API... 73
10.11 The Trigger API.. 74
10.12 HAVi UI ... 74

10.12.1 Current Status .. 74
10.12.2 Remote Control .. 74
10.12.3 Supported Devices... 74
10.12.4 Looks.. 74
10.12.5 Widgets .. 74

10.13 DAViC ... 74
10.13.1 Introduction .. 74

10.14 Complete Data Flow Examples.. 74
10.14.1 Introduction .. 74
10.14.2 Service Information Example ... 76

11. SECURITY... 78
12. JAVA RUNTIME ENVIRONMENT EXTENSIONS.. 79
13. APPLICATIONS... 81

13.1 A Prototypical Xlet .. 81
13.2 The Electronic Program Guide Xlet... 81
13.3 The Stock Sticker Xlet .. 83

13.3.1 Introduction .. 83

 IV

13.3.2 Components .. 83
13.3.3 The StockTicker Xlet ... 84
13.3.4 Compiling (Unix) .. 85
13.3.5 Setting up the Run Environment (Unix)... 85
13.3.6 Running (Unix)... 85
13.3.7 StockTicker Xlet Source Code (selected modules) ... 86

14. DISCLAIMER... 88

 1

1. INTRODUCTION

This document describes the National Institute of Standards and Technology (NIST) prototype
implementation of the Digital TV Application Software Environment (DASE) Procedural Application
Environment (PAE). The purpose of the implementation is to provide a programming environment for DASE
applications. The implementation relies on the Hardware Abstraction Layer (HAL) for access to system data
and resources that are normally system dependent. THE HAL isolates the implementation from the
underlying Set-top Box (STB) environment, including transport stream data management. In the current
NIST implementation, the HAL communicates with the NIST Simulation for STB functionality and transport
stream data access.

The NIST DASE Prototype Implementation PAE Implementation Guide provides the reader with a
behind the scenes view of the implementation internals. It is hoped that this document will provide insight to
other developers in their implementations and help to clarity the interpretation of Application Programming
Interfaces (API) specified in the DASE PAE document [A100/2].

2. DEFINITION OF TERMS

2.1 Acronyms and Abbreviations
API Application Programming Interface
ATSC Advanced Television Systems Committee
AWT Abstract Window Toolkit
DASE Digital TV Application Software Environment
DAVIC Digital Audio Visual Council
DET Data Event Table
DST Data Service Table
EIT Event Information Table
ETT Extended Text Table
HAL Hardware Abstraction Layer
HAVi Home Audio Video Interoperability
JDK Java Development Kit
JMF Java Media Framework
JNI Java Native Interface
JRE Java Runtime Environment
JVM Java Virtual Machine
MGT Master Guide Table
NIST National Institute of Standards and Technology
PAE Procedural Application Environment
PCR Program Clock Reference
PSIP Program and System Information Protocol
P-Java Personal Java
RI Reference Implementation
RRT Region Rating Table
SDF Service Description Framework
STB Set-top Box
STT System Time Table
VCT Virtual Channel Table
UML Unified Modeling Language
URI Uniform Resource Identifier

 2

2.2 Terms
DASE application:

data broadcast application:

data carousel:

data-enhanced A/V channel: corresponds to a television service that also carries data
components.

data service:

hardware abstraction layer:

stand-alone data channel: corresponds to virtual channels with only data components.

service:

television service: corresponds to virtual channels with audio/video components.

xlet:

 3

3. API IMPLEMENTATION MAPPINGS AND STATUS

3.1 Status Table Guidelines
Throughout this document the completion status of the implementation at various levels is given.

Table 1 provides descriptions for the stages of completion. This will give the reader some indication of the
status of API packages.

Level Explanation

1 Complete (Fully Implemented, Reviewed, Tested)
2 Mostly Complete (Mostly Implemented, Not reviewed, Not Tested)
3 Partially Complete (Most APIs covered, holes exist, not reviewed, not tested)
4 Some Implementation (Minimal functionality provided)
5 Implementation Template Classes Created
6 No Implementation

Table 1 Status Guidelines

3.2 DASE API Implementation Status

The NIST implementation adheres to the DASE API specification Version A-100 Release 0
distributed on or about June 29th, 2000. It is important to note that this is not the latest release. The current
release is Version A-100 Release 4 distributed on or about October 23rd, 2000. NIST chose to freeze the
implementation at this release to avoid excessive updating and changes to the implementation that would
hinder progress. NIST will update the implementation when a stable (approved) version of the specification
is available. Table 2 gives an overview of the API package specification to implementation mappings. The
table also gives an indication of the completeness for each package.

Specification Package Implementation Packages Level

javax.tv.carousel javax.tv.carousel, gov.nist.hwabstract 3

javax.tv.graphics javax.tv.graphics 1

javax.tv.locator gov.nist.locator 3
javax.tv.media 4

javax.tv.media.protocol 4

javax.tv.net javax.tv.net 5

javax.tv.service gov.nist.service 3
javax.tv.service.guide gov.nist.service.guide 3
javax.tv.service.navigation gov.nist.service.navigation 3
javax.tv.service.selection gov.nist.service.selection 2
javax.tv.service.transport gov.nist.service.transport 4
javax.tv.util 5

javax.tv.xlet gov.nist.hwabstract 2
org.atsc.application org.atsc.application, gov.nist.application,

go.nist.hwabstract
2

org.atsc.carousel org.atsc.carousel 1

org.atsc.data gov.nist.data 3
org.atsc.graphics org.atsc.graphics 5

org.atsc.management org.atsc.management, gov.nist.hwabstract 3

org.atsc.net org.atsc.net 5

org.atsc.preferences org.atsc.preferences, gov.nist.preferences 2

org.atsc.registry org.atsc.registry, gov.nist.hwabstract 2

 4

org.atsc.security org.atsc.security 5

org.atsc.si gov.nist.service 5

org.atsc.si.descriptor 5

org.atsc.system org.atsc.system 1

org.atsc.user org.atsc.user, gov.nist.user 2

org.davic.media 4

org.davic.resources 5

org.havi.ui 4

org.havi.ui.event 4

Table 2 PAE API Implementation Status

 5

4. DEVELOPMENT ENVIRONMENT

It is important to note the development environment for the various software packages provided in
the NIST DASE Development Environment (Table 3). The STB simulation environment is not restricted in
any significant way to the use of software. The DASE Applications are restricted to the DASE API
specification and Java Swing. It is anticipated that the necessary Java Swing packages for an application
will be downloaded as part of the application. The API implementation is restricted to the environment
imposed by the DASE PAE.

General Specific
Hardware Intel Based PC Platform
Operating System Solaris, Linux
Simulation Platform JDK 1.2, GNU C version 2.8.1
API Implementation Platform *Personal Java 1.2, JMF 1.1
Additional DASE Application Libraries Java Swing

Table 3 Development Environment

*Currently the API implementation only uses classes defined in the DASE-J spec (pJava plus some

additional classes). However, the entire NIST platform (API implementation plus simulation) is built and run
using the JDK version 1.2 which is not pJava only. Specifically, the simulation platform makes use of classes
that are not found in DASE-J. NIST has produced its own internal version of the DASE-J libraries for testing
the API implementation.

The simulation environment uses a C program to initialize the JVM. The Java Native Interface (JNI)
calls are based on the Java version 1.2 libraries.

In addition to Solaris and Linux, there have been numerous ports by others of the development
environment to the Window NT operating system.

 6

5. SYSTEM DESIGN

5.1 Introduction
The modularization of the DASE architecture allows for stand-alone components to be built

independently. The NIST environment takes advantage of this and is implementing the complete
infrastructure to develop and test a DASE PAE. The scope of the NIST environment includes
implementation of the DASE API and associated managers. NIST is also developing a STB simulation
platform that provides an underlying support environment for the API implementation. Together, the API
implementation and simulation provide a software development environment where the DASE Java APIs
can be exercised and DASE procedural applications can be tested. NIST uses the Sun Microsystems’ JVM
as an implementation of the AEE. Currently the NIST environment does not include an implementation of the
Declarative Application Environment (DAE), although future work may include this segment.

Figure 1 NIST/DASE Prototype Implementation
Software Stack

Figure 2 DASE Application Interaction

An overview of the NIST prototype implementation stack is shown in Figure 1. At the top of the stack
are Xlets that access the DASE API for receiver services. Implementation classes and the Hardware
Abstraction Layer fulfill the requirements of the DASE API. The HAL provides an abstraction layer between
the implementation and the underlying set-top box environment.

5.2 NIST DASE Development Environment Components

5.2.1 Introduction

The class libraries of the NIST DASE RI include the following:

• The STB Simulation Classes - These are Java classes that implement part of the STB's
functionality, such as ATSC data management, user information storage, the data carousel, etc.

DASE API Interfaces and Classes

DASE Application (Xlet)

NIST Implementation

NIST Hardware Abstraction Layer
NIST STB Simulation Commercial STB STB Simulation

DASE AP I
<<Interface>>

Xlet
(f ro m xle t)

<<Interface>>
DASE APP

DASE API ImplementationHW Abstraction

 7

These classes provide services to their clients (The Hardware Abstraction) without dependencies on
the clients and are located in packages stb.managers, stb.datatypes and stb.utils.

• The Hardware Abstraction Classes - These classes are clients of the STB classes and provide an
interface to the API implementation classes. Functions include merging of the ATSC tables, user
management, and application management. Several of the DASE interfaces are implemented here.
These classes are located in package gov.nist.hwabstract.

• NIST DASE API Implementation Classes - Implement the interfaces defined by the DASE API
specification. These classes are contained in packages under gov.nist.

• DASE API Classes and Interfaces - These are defined by the DASE specification and include
javax.tv and org.atsc packages. The interfaces defined in these packages are implemented in
the NIST API packages.

• Non-Java Modules - These are modules written in a language other than Java, but will be
accessed through Java wrapper classes. One example is the NIST ATSC transport stream parser.

In addition, the NIST DASE RI uses several other class libraries that are not part of the NIST

distribution, but are expected to be part of the user’s environment along with the JVM:

• P-Java API Classes - These are Java classes specified by DASE as part of the DASE-J (Java) run-
time environment; i.e. java.io, java.awt, etc. The DASE API can make use of the standard
Java libraries to implement API functionality. The P-Java API, as defined by Sun, is to be used.

• Java Runtime Classes - These are Java classes delivered as part of the Java development kit. The
NIST RI uses the Sun JDK based on the Java 2 platform. Care must be taken that these class
libraries are not part of the CLASSPATH visible to DASE applications.

It is anticipated that the API implementation classes will be ported to emulated and real-time

environments. Therefore, the interface between the API implementation and the HW abstraction is restricted
to Java method calls. However, the interface between the HW abstraction and STB functionality provided in
the emulated environment may be written in Java, wrapped by a Java class, or accessed via the Java Native
Interface (JNI).

One of the requirements on the implementation is that the Java classes that implement the DASE

API will only call other Java class methods and not interface directly to non-Java modules. A major design
goal is to have the API implementation independent of the underlying data stream encoding, while
minimizing the number of classes that need to change for porting. To achieve this goal, the NIST RI is
implemented as three layers with differing roles.

5.2.2 Overview of the STB Simulation

 8

The STB layer implements functions such as ATSC stream parsing, ATSC table management, and
other data management including User and Common preferences; no semantic meaning on the data is
provided by the STB layer, only consistent access to the data.

A central task of the Java STB simulation classes is to provide the implementation with ATSC data
structures and associated data management functions. A key aspect of the API prototype implementation
design is the intermediate software HAL. It provides an interface to the STB environment that hides the
details of the underlying architecture from the implementation. The HAL assumes no intelligence at the STB
interface and accesses the raw MPEG/ATSC table information. At the API interface, the HAL provides a
consistent view of the MPEG/ATSC table information in a manner that reflects the API definition. It is
envisioned that this multi-layered design will ease the task of porting the implementation to other receiver
platforms. Thus a porting effort would be focused on the HAL, which provides a central location where
system level dependencies are isolated at the cost of an extra software layer. This may hinder performance
in response time sensitive components of the system. However, critical performance locations can be
identified and re-coded to achieve performance requirements. This layered approach is a design trade-off in
the NIST implementation, which emphasizes clarity and portability over performance and efficiency

The NIST STB simulation is a collection of Java classes that encapsulate the functions of a generic
ATSC STB. These classes are provided to the API implementation as services. A special class within the
STB simulation manages and controls access to this Java-based simulation. The STB simulation is
composed of two modules, the STB simulation control and the Java simulation classes. The simulation
control boots the STB simulation and performs system initialization. Tasks include managing the JVM,
running applications, and creating simulation and HAL managers.

The Java simulation classes are largely composed of manager and datatype objects. The manager
objects maintain the ATSC/MPEG table data as well as STB functionality. The datatype objects are
constructs that represent ATSC/MPEG table data, as well as data carousel objects. For example, an
ATSCVirtualChannel object contains the information for a virtual channel. The datatype objects act as
simple data repositories that map ATSC data into Java types. The Java simulation also includes classes to
read the raw ATSC ancillary data extracted from a bitstream. The NIST STB simulation does not process the
MPEG transport stream, however, but relies on an external ATSC/MPEG parser program to extract the
ATSC data tables from that stream and provide them as input to the simulation. The format of this simulation
input has been defined by NIST and contains only updated versions of the ATSC and MPEG tables, with no
audio or video streams present.

In summary, the design philosophy with regards to the three layers is that the STB simulation
performs data management by providing a repository for ATSC and other data. The HAL provides
information management by creating DASE objects from the data (DASE Services from ATSC virtual
channels, for example) The API implementation satisfies the DASE specification via interfaces to the HAL.

5.2.3 Hardware Abstraction Layer Overview

The Hardware Abstraction Layer merges ATSC tables (providing a single view across all of the
tables), and provides the API implementation access to the data in a convenient format. All of the changes
necessary to port the API should be accomplished within the HW abstraction layer. Therefore, the API
implementation classes will only interface to Java classes and will retrieve all data as Java types.

The HAL Data Manager (class DataManager) object manages the global view of the ATSC data

and other data (e.g. Users) for the API implementation. Many of the other classes within the hardware
abstraction layer provide a mapping of the data from the STB into a format required by the API
implementation.

 9

Some classes in the HAL implement several of the DASE interfaces. For example, class
XletManager in the HAL implements the ApplicationRegistry interface.

The Hardware Abstraction Layer is not completely void of dependencies on the API classes. In

several cases, the HAL classes will implement interfaces defined by the API, such as the user registry.
These HAL classes will retrieve the underlying data from the STB simulation. When a port is done, the HAL
classes will need to change the low-level access to the data, but their public interfaces will not change.
When data must be accessed with a single view (such as user management), the HAL performs this data
aggregation.

5.2.4 DASE API Overview

The API implementation classes comprise the third layer. Semantic rules defined in the DASE API
specification (such as user preference filtering) will be done in the API implementation classes.

The DASE API functionality is provided by a set of Java classes that implements the API methods.
The naming conventions we have chosen to use are as follows: API classes and interfaces are named
exactly as they appear in the DASE specification. Implementation classes that support an interface use the
interface name with Class appended. For example, the API class Service is implemented by class
ServiceClass.

The core work of the implementation classes is to map the data maintained by the hardware
abstraction layer into the views provided by the DASE API. For example, the implementation class
ServiceCollectionClass will use data from the ATSC virtual channel table, as well as other ATSC
tables, to return collections of Service objects. Other functionality of the API implementation is to provide
for control over streaming data by the DASE application.

In summary, the design philosophy with regards to the three layers is this: The STB simulation
provides data management by providing a repository for ATSC and other data. The HAL provides
information management by creating DASE objects from the data (DASE Services from ATSC Virtual
channels, for example). The API implementation fulfills the DASE specification and interfaces to the HAL.
Most of the behavior defined in the DASE specification is implemented here, although in some cases that
behavior will be implemented by the HAL. For example, the Xlet lifecycle model is implemented in the HAL.

 10

6. THE STB SIMULATION

Package
gov. nis t.hwabstract

DataManager

STB_main

STBSimManager
Instantiates one
STBSimManager and
one DataManager

Package
s tb.managers

PCRManager

Figure 3 Simulation Components

6.1 Introduction

The STB simulation provides the platform on which the DASE API executes. Figure 2 shows the
Unified Modeling Language (UML) diagram for the DASE application to API interaction. The diagram shows
how the API implementation (supporting the interface defined by DASE) relies on the hardware abstraction
and STB simulation to provide services.

Figure 3 shows the main components of the STB simulation and the runtime relationships between
the components. The controlling process for the simulation is a C program called STB_main. This program
starts up the Java virtual machine (JVM) and creates the STB manager (class STBSimManager) and the
HAL DataManager objects within the JVM. Also, STB_main creates the PCRManager program as a child
process.

 11

6.2 The Native Code Components

6.2.1 The Simulation Control Program

The central point for starting and controlling the STB simulation is the program STB_main that is
written in the ‘C’ language. This program performs several functions:

• Loads the Java Virtual Machine (JVM)

• Controls the logging process for itself as well as the JVM and Java code

• Starts the Program Clock Reference (PCR) generator program

• Allows for the launching of Java programs from the command line

STB_main loads the JVM upon startup. Two objects are instantiated within the JVM with the logging
option set based on the command line entry. These objects are STBSimManager and DataManager as
can be seen in Figure 3. If the attempt to create either of these objects fails, the simulation terminates.

The PCR generator program, PCRManager, is a stand-alone program started as child process by
STB_main. The command line parameters are passed to PCRManager from STB_main, notably the socket
number used by the program to communicate with the HAL. The next section describes PCRManager in
more detail.

The NIST DASE Development Environment User’s Guide [USER-GUIDE] provides detailed
instructions on running the simulation.

ParserTransport
Stream

PCR
Manager

Simulated STB Environment

ATSC
Stream Reader

MPEG Decoder
Manager

ATSC
Tables

PCR
Time

stamps

PCR Clock
Tuning

Figure 4 Decoder Hardware Simulation

6.2.2 Program Clock Reference Manager

 12

This component simulates the real-time hardware PCR that should be found on any hardware
MPEG decoder. Figure 4 shows the interactions between the PCR Manager and the rest of the simulation
environment. The PCR Manager acts as the interface between the stream parser that periodically receives
PCR timestamps and software components higher in the rendering chain that want to read such a clock on a
random-access basis.

The specification for ATSC requires that PCR timestamps be sent at least every 20 ms, so the PCR
server does not implement a complex phase-locked loop (PLL), but rather a simple one-time linear
adjustment algorithm.

6.2.2.1 Stand-alone mode
Syntax of the program (use -h for details):

PCRManager [-p port] [-w file] [-f fifoName] [-i PID] [-v] [-v -i PID]

PCRManager tracks the local clock on the PID number defined by DSTP_VIDEO_PID (currently
0x8951=35153). If no FIFO is specified on the command line, this PID can be used for test purposes,
without a parser attached. Upon receipt of a SIGUSR2 signal, a discontinuity condition is simulated on the
test stream. A SIGHUP signal will reset the clock to 0 with a discontinuity condition.

Additional PIDs may be simulated with the -i option; they are not affected by signals.

6.2.2.2 Interface to the Stream Parser
The parser sends each PCR Timestamp it receives to the PCRManager. Theoretically, there may be

as many as 64K different PCR clocks, one for each possible PID. Although it is most likely that a hardware
device will track only one PCR clock (which one?), PCRManager will track any number of PCR streams. For
each PID encountered in the stream, the manager maintains a clock trained to the timestamps received from
the parser; it also keeps track of discontinuity conditions indicated in the header (a counter is incremented
for each discontinuity). The structure of a PCR packet from the parser is shown below:
struct PCRTimeStampStruct {
 unsigned char header;
 unsigned char flags;
 unsigned short PID;
 unsigned int PCRHigh;
 unsigned int PCRLow;
 unsigned int padding;
};

6.2.2.3 Interface to Clients

Parser PCRManager
TCP Client

TCP Client(fifo)
(socket)PCR Timestamps

Figure 5 PCR Manager to Client Communication

The interface with rendering components is done concurrently via TCP/IP sockets. Figure 5 shows
the PCR Manager interaction with a TCP/IP client. This model is intended to simulate the behavior of a
device driver (many being able to access it at the same time). A client will connect to the port specified in the
command line. The communication between both ends is done via standard packets shown below:
struct PCRSlaveRequestStruct {
 unsigned char PIDHigh; /* 1 */

 13

 unsigned char PIDLow; /* 1 */
 unsigned char pcr[8]; /* 8 */
 unsigned char continuityCounter; /* 1 */
 char invalid; /* 1 */
};

A client prepares a packet by filling the PCR field. Upon receipt, the server fills in the other fields, or
sets the invalid flag, and sends the message back.

6.2.2.4 Test Feeder
PCRTestFeeder is a test program to generate parser packets.

6.2.3 The Bitstream Parser
The parser process demultiplexes the transport stream from a file or a pipe. It routes the ATSC

tables to a reader object in the Simulation (described elsewhere). PCR Timestamps are sent to a
PCRManager process (see below). A back channel to the parser is available for simple tuning operations.

6.3 Java Components

 14

Figure 6 Simulation Management Classes

ATSCByteStreamParser

ATSCByteStreamParser()
ATSCByteStreamParser()
destroy()
getCurrentATSCManagerSet()
getCurrentPhysicalChannelNumber()
getCurrentTSID()
isActive()
lastActiveTimeMillis ()
readBytes()
run()
sendCommand()

(from m a nagers)

ATSCManagerSet

ATSCM anagerS et ()
ATSCM anagerS et ()
ini tial ize()

(from m anagers)

DtvDisplay

DtvDisplay()
access$0()
access$1()
access$2()
access$3()
add()
addNotify()
paint()

(from m anagers)

ATSCDataManager

ATSCDataManager()
ATSCDataManager()
get ATSCMana gerS et ()
get ATSCTables()
get A llATSCTables()
getTSIDList()
initialize()
makeConditionalAccessTableCurrent()
makeDataServiceTablesCurrent()
makeMasterGuideTableGroupCurrent()
makeProgramAssociationTableGroupCurrent()
makeSystemTimeTableCurrent()
not ifyModuleDownloadComp lete()

(from m anag e rs)

STBSimManager

STBSimManager()
STBSimManager()
addSTBChangeListener()
addUser()
deleteUser()
findUser()
getATSCDataManager()
getCommonSettings()
getCurrentUserLis t()
getDtvDisplay()
getSTBStates()
getUserListS ize()
initialize()
notifySTBChangeListeners()
readData()
removeSTBChangeListener()
saveData()
setCommonSettings()
updateUser()

(from m anagers)

STBConfigManager

STBConfigManager()
STBConfigManager()
finalize()
getCommonPreferences()
getRatingLevel()
setCommonPreferences()
setRatingLevel()

(from m anagers)

SetManager

SetManager()
add()
c lone()
delete ()
readData()
re trieve()
saveData()
s ize()
to Array()

(from uti ls)

SystemManagerSet

S yst emM anagerS et()

(from m anagers)

ATSC Tab leS et

ATSCTableSet()
setDSTDownloadIds()

(from da ta types)

 15

Data Service Table
Section

<<speci ficat io n>>

ATSCDataServiceTable

System Tim e
Table

<<speci ficat ion >>

Mas ter Guide
Table

<<speci ficat ion >>

Vi rt ual C hannel
Tab le

<<specification>>

Rat ing R egion
Table

<<s peci fication>>

Event Inform ation
Table

<<speci ficat io n>>

Extend ed Tex t
Table

<<speci ficat ion >>

Tap
<<speci fica tion>>

Network Resources
Table

<<specification>>

ATSCEventInformation

ATSCExt endedTextM essage

ATSCExtendedTextTableManager

ATSCE vent Information Table Manag er

ATS CSy stemTimeTab le

ATSCMasterGuideTableEntry

ATSCM ast erG uideTableManager

ATSCVirtualChannelTableManager

ATSCVirtualChannel

ATSCNetworkResource

ATSCDataServiceTablesManager

ATSCRatingRegionTablesManager

ATSCRat ingReg ionTable

Figure 7 Data Management Components

 16

Figure 6 gives the class diagram for the simulation classes used to maintain the STB state. For
example, configuration management, Figure 7 shows the mapping of the ATSC data tables to the simulation
components. The components in right side of the diagram represent the Java classes used to store and
manage the ATSC table data. The data and management classes are discussed in the next sections.

6.3.1 The Manager Classes

The manager classes are responsible for maintaining the ATSC data tables as well as users,

application data, and other data sets associated with the STB simulation. These classes are in package
stb.managers.

The simulation manager STBSimManager object is responsible for creating the ATSC table
manager objects, the ATSC data stream readers ATSCByteStreamParser (one for each virtual tuner),
and several other managers such as the STB configuration manager. The STBSimManager implements
several management functions directly, such as user management.

Each table manager handles one type of ATSC table, and only one instance of the table. In order to
manage more than one table instance (such as when there are multiple streams) multiple instances of the
table manager must be created. Examples of table managers shown in Figure 7 are the
VirtualChannelTableManager and MasterGuideTableManager classes.

The highest visibility of the ATSC table manager classes is package. This restriction means that
only classes contained within the stb.managers package can call the retrieval methods. The ATSC tables
are private data within the manager classes. Therefore, the retrieval methods of each manager return a
reference to an array containing the data elements of that table. There is no danger of having the array
updated (due to the arrival of a revised table in the input stream) during the getXxx() method because any
new updates to the table are maintained in a separate array, and access to the current arrays is
synchronized.

Table managers are grouped into sets where one set manages one transport stream (as identified
by its TSID). The ATSCManagerSet class maintains this grouping.

Class ATSCDataManager acts as a central control point for access to all of the ATSC and MPEG
tables. A reference to an object of this class is returned by method
STBSimManager.getATSCDataManager(). The public methods of class ATSCDataManager provides
access to the ATSC tables and MPEG PMT/PAT tables via the ATSC table managers. The tables are
returned as a set with references to the tables contained in an ATSCTableSet object.

6.3.2 Input Stream Parsers

The parser classes in package stb.managers are responsible for extracting the information from
the MPEG and ATSC tables, as well as Data Carousels, contained within the NIST-defined input stream.
These classes cannot be used to parse an MPEG transport stream as the simulation relies on an external
process to perform that function.

Class ATSCByteStreamParser is the main parser for the ATSC data stream format defined by

NIST (see [USER-GUIDE] for a description of this stream). This class extends the Thread class in order to
run independent of the main STB simulation. The simulation manager STBSimManager creates an object of
this class as an active thread.

 17

The run() method of this class waits to read data over a FIFO and determines what type of data it
is (ATSC PSIP table, MPEG table, Data Carousel, etc.). ATSCByteStreamParser calls method
parseSection() of an object of class PrivateSectionParser to perform the actual data stream
parsing.

6.3.3 The Datatype Classes

package stb.datatypes;
public class ATSCVirtualChannel extends ATSCDatatype implements Cloneable {
 /** Indicates if this is a terrestrial or a cable virtual channel. */
 public int deliverySystemType;
 /** Constant for <code>deliverySystemType</code>. */
 public final static int DELIVERY_TERRESTRIAL = 1;
 /** Constant for <code>deliverySystemType</code>. */
 public final static int DELIVERY_CABLE = 2;
 /** Constant for <code>deliverySystemType</code>. */
 public final static int DELIVERY_SATELLITE = 3;
 public String short_name;
 public short major_channel_number;
 public short minor_channel_number;
 public short modulation_mode;
 public long carrier_frequency;
 public int channel_TSID;
 public int program_number;
 public byte ETM_location;
 public boolean access_controlled;
 public boolean hidden;
 public boolean hide_guide;
 public boolean path_select;
 public boolean out_of_band;
 public byte service_type;
 public int source_id;
 /**
 * <code>ATSCArrayList</code> of <code>ATSCDescriptor</code>s.
 */
 public ATSCArrayList descriptors = new ATSCArrayList(5);
 /**
 * Creates and returns a deep copy of this object.
 * @return A deep copy of this instance.
 */
 public Object clone() {
 :
 } /* public Object clone() */
} /* public class ATSCVirtualChannel */

Figure 8 Class ATSCVirtualChannel

The datatype classes correspond to the entries in the ATSC data tables and other information

managed by the STB simulation (Users, Preferences, etc.) These classes are in package stb.datatypes.
For example, an ATSCVirtualChannel object contains the information for one virtual channel. The
datatype classes act as simple data repositories for the ATSC data mapped into Java types.

All of the ATSC data classes are derived from a base class called ATSCDatatype that implements
the Cloneable and Serializable interfaces to enable deep copying and object serialization. The non-ATSC

 18

data classes (User for example) derive from base class SimDatatype that also implements Cloneable and
Serializable.

The datatype classes define all of the attributes of the class as public. Therefore, there are no
access methods; the data items are manipulated directly. This approach simplifies the client programming in
that there is no need to call several methods to retrieve simple data items. The attributes of the class have
the same names as the tables defined in [ATSC:A65]. The simulation assumes that the client classes will
access the data in a read-only fashion. Therefore, if a client class changes the data fields, that change will
be reflected to other clients because references to the data are returned from the ATSC table managers, not
clones. The philosophy of the simulation is to treat the data as a shared memory segment would be treated,
with little locking. However, locking of the tables does occur when the makeCurrent() method of a table
manager is called because this method is declared synchronized. This locking mechanism allows the
current version of the table to be replaced with a new version and prevents clients from retrieving a mix of
current and new data.

Figure 8 shows the ATSC Virtual Channel class as an example. The descriptors associated with the

table are included in the class as an ATSCArrayList, a datatype class created for consistent access to
ATSC descriptors. Also, the clone() method is overridden in classes where it is necessary to provide deep
copying.

Other classes contained in package stb.datatypes are classes used to represent various data
items internal to the simulation. Examples of these classes include CommonSettings to store the STB
settings and preferences, and various exceptions thrown by the STB simulation.

6.3.4 Other Classes

These classes are various stand-alone utilities like Huffman coder/decoder, output functions in

compressed bitstream form and logging classes used throughout the simulation. Class ATSCInputStream
contains utility methods used to parse specific sections of the input stream. The classes are in package
stb.utils. Another class in this package, SetManager, implements a simple associative set, useful for
small databases. The simulation manager uses this class to create databases of users, STB settings, and
other set-top box information.

6.4 PSIP Table Management in the Simulation

 19

Figure 9 PSIP Management Classes

6.4.1 PSIP Table Classes
This section describes the management of the Program and System Information Protocol (PSIP)

tables within the simulation. The definition of the PSIP tables is contained in [ATSC:A65]. The simulation
classes directly map the PSIP tables in terms of data layout and management as described in Section 6.3.
This section provides more detail on the classes used to maintain and manage the PSIP table data. Figure 9
shows the class diagram for PSIP management.

What follows is a brief description of the classes used to manage the PSIP tables within the
simulation. Because table management is a core issue in any STB, these classes may be reused and
recombined to support the needs of PSIP data.

6.4.1.1 Manager Classses
These classes are located in package stb.managers.

6.4.1.1.1 ATSCDataManager
This class is the main access point for all of the table manager classes. It provides synchronized

access to the tables so that a complete table will be accessed, and also that the complete set of tables
associated with the Master Guide Table are kept in alignment.

ATSCByteStreamParser
(from m a nage rs)

ATSCInputStream
(f ro m uti ls)

PrivateSec tionParser
(from m anagers)

ATSCEventInformat ion

source_id : int
event_id : short
start_time : long
ETM_location : byte
length_in_seconds : int

(from dat atype s)
ATSCEventInformationTableManager

ATSCEventInformationTableManager()
addEvent()
getCurrentEventList()
makeCurrent()
resetNew()

(from m anag ers)

ATSCExtendedTex tMessage

$ NATURE_IS_CHANNEL : byte = 0
$ NATURE_IS_EVENT : byte = 1
nature : by te
source_id : int
event_id : short

(from datatypes)
ATSCExtendedTex tTableManager

ATSCExtendedTex tTableManager()
addMessage()
getCurrentMessageList()
makeCurrent()
resetNew()

(from m ana gers)

ATSCConditionalAccessTableManager

ATSCConditionalAccessTableManager()
addDescriptor()
getCurrentDescriptorList()
makeCurrent()
resetNew()

(from m anagers)

ATSCMasterGuideTa bleManager

ATSCMasterGuideTableManager()
addDescriptor()
addEntry()
getCurrentDescriptorList()
getCurrentEntryList()
isAllReceived()
makeCurrent()
markTableReceived()
resetNew()

(from m anagers)

ATSCMasterGuideTableEntry

num berOfBytesReceived : long
received : boolean
table_type : int
table_PID : short
table_type_vers ion_number : by te
number_bytes : long

(from d ata ty pes)

ATSCRatingRegionTablesManager

ATSCRatingRegionTablesManager()
addTable()
getCurrentTableList()
makeCurrent()
resetNew()

(from m anagers)

ATSCRatingRegionTable

rating_region : short
version_number : byte

(from dat atype s)

ATSCSystemTimeTableManager

A TS CSys temTimeTableManager()
getCurrentTable()
makeCurrent()
setNewTable()

(from m anagers)

ATSCSystem TimeTab le

system_time : long
GPS_UTC_offset : sho rt
DS_status : boolean
DS_day_of_month : byte
DS_hour : sho rt

(from datatypes)

ATSCVirtualChannelTableManager

ATSCVi rt ualChannelTableManager()
addChannel()
addDescrip tor()
getCurrentC hannelList ()
getCurrentDescriptorList()
makeCurrent()
resetNew()

(from m ana gers)

ATSCV irtua lChannel

deliverySys temType : int
$ DELIVERY_TERRESTRIAL : int = 1
$ DELIVERY_CABLE : int = 2
$ DELIVERY_SATELLITE : int = 3
major_channel_number : short
minor_channel_number : short
modulation_mode : short
carrier_frequency : long
channel_TSID : int
program_number : int
ETM_location : byte
access_controlled : boolean
hidden : boolean
hide_guide : boolean
path_select : boolean
out_of_band : boolean
service_type : by te
source_id : int

(from datatypes)

 20

6.4.1.1.2 ATSCEventInformationTableManager
It manages a collection of events as defined in [ATSC:A65]. This class is analogous to the Event

Information Table.

6.4.1.1.3 ATSCMasterGuideTableManager
Manages a collection of entries from the Master Guide Table (MGT). This collection includes all

descriptors sent down with the MGT.

6.4.1.1.4 ATSCRatingRegionTablesManager
Manages a collection of Rating Region Tables (RRT). Each table contains the rating information for

a single rating region.

6.4.1.1.5 ATSCVirtualChannelTableManager
This class manages the collection of virtual channels. A current collection and new collection are

maintained, and when a new table is parsed, the new collection replaces the current collection.

6.4.1.1.6 ATSCExtendedTextTableManager
This class manages a collection of extended messages.

6.4.1.2 Datatype Classes
These classes are located in package stb.datatypes.

6.4.1.2.1 ATSCDatatype
This class is the parent class of all the datatype classes.

6.4.1.2.2 ATSCEventInformation
This class contains the information for one event of an Event Information Table, as defined in

[ATSC:A65]. It is a simple repository for the event information by mapping the event information into Java
types.

6.4.1.2.3 ATSCExtendedTextMessage
This class contains the information for a single Extended Text Message, as defined in [ATSC:A65].

It is a simple data repository for the Extended Text Message data as Java types.

6.4.1.2.4 ATSCMasterGuideTableEntry
This class contains the information for one entry of the Master Guide Table, as defined in

[ATSC:A65].

6.4.1.2.5 ATSCRatingRegionTable
This class contains the information for a Rating Region Table, as defined in [ATSC:A65].

 21

6.4.1.2.6 ATSCVirtualChannel
This class contains the information for a single virtual channel, as defined in [ATSC:A65]. Virtual

channels from both the Cable Virtual Channel Table (CVCT) and Terrestrial Virtual Channel Table (TVCT)
are represented by this class.

6.4.2 Virtual Channel Table Example

Figure 10 Virtual Channel Table Management

ATSCDescriptor

ATSCDescriptor()
c lone()
desc riptorBaseLength()

(from da ta types)

ATSCVi rt ualChan nel

deliverySystem Type : int
$ DELIVERY_TERRESTRIAL : int = 1
$ DELIVERY_CABLE : int = 2
$ DELIVERY_SATELLITE : int = 3
m ajor_channel_number : short
m inor_channel_number : short
m odulation_m ode : short
carrier_frequency : long
channel_TSID : int
prog ram _num ber : i nt
ETM _location : by te
access_ control led : boolean
hidden : boolean
hide_guide : boolean
path_selec t : boolean
out_of_band : boolean
service_type : by te
source_id : int

(from data types)ATSCIn putS tream
(f ro m u ti ls)

P rivateSectionParser
(fro m m anagers)

ATSCVirtualChannelTableManager

verbose : boolean

ATSCVirtualChannel TableManager ()
addChannel()
addD escriptor ()
getCurrentCha nnelList ()
getCurrentDesc riptorLis t()
m akeCurrent ()
resetNew()

(from m anagers)

ATSCDataM anager

verbose : boolean

ATSCDataM anager()
ATSCDataM anager()
getATSCM anagerSet()
getATSCTables ()
getA llATSCTables ()
getTS IDLis t()
initialize()
m akeConditionalAccessTableCurrent()
m akeDataServiceTablesCurrent()
m akeMas terGuideTableGroupCurrent()
m akeProgram Assoc iationTableGroupCurrent()
m akeSys tem Tim eTableCurrent()
notifyM oduleDownloadComplete()

(fro m m ana gers)

ATSCByteStream Parser

ATSCByteStream Parser()
ATSCByteStream Parser()
des troy()
getCurrentATSCM anagerSet()
get Cu rrentPhys icalChannelNum ber()
getCurrentTS ID()
i sAc tive()
las tActiveTim eM illis ()
re adBy tes ()
run()
sendCom mand()

(from m anagers)

 22

 :
PrivateSectionParser

 :
ATSCVirtualChannelTableManag

 :
ATSCDescriptor

 :
ATSCInputStream

vc :
ATSCVirtualChannel

addChannel(ATSCVirtualChannel
)

 :
ATSCByteStreamParser

parseSection()

parseVirtualChannelTableSection(ATSCManagerSet, byte[],
i t)

readATSCVirtualChannel(
)

readATSCDescriptor()

<<create>>

<<create>>

addDescriptor(ATSCDescriptor
)

Figure 11 Virtual Channel Parsing

As stated above, the main function of the STB Simulation is to provide simplified access to the
ATSC and MPEG tables. The simulation maps the data from the bitstream into Java classes and provides
synchronized access to this data. This section discusses how the ATSC and MPEG tables are parsed and
how the data is then managed. The parsing and managing of the ATSC Virtual Channel table is used as an
example to trace the flow of data through the simulation.

Figure 10 shows the relationship between the classes used for ATSC Virtual Channel Table parsing
and management. Figure 11 is the interaction diagram showing the method invocations needed to perform
virtual channel parsing.

The ATSCByteStreamParser object reads the bitstream from the FIFO and calls method
parseSection() of PrivateSectionParser to parse virtual channels from the bitstream by using an
ATSCInputStream object. PrivateSectionParser adds the virtual channel objects to the
ATSCVirtualChannelTableManager by calling the addChannel() method. A similar procedure occurs
for adding the descriptors for the virtual channels. After all of the virtual channels and descriptors are read,
method ATSCVirtualChannelTableManager.makeCurrent() is called (not shown in Figure 11) to
move the new virtual channel information to the current table. Subsequent calls to retrieve virtual channels
will result in the new virtual channel information being retrieved.

When the complete table (or set of tables in the case of the Master Guide Table and all associated
tables) is received, the table set manager ATSCDataManager is notified by ATSCByteStreamParser and
the new table (or set of tables) is made current.

 23

6.5 Data Broadcast Management

The STB manager is responsible for managing the resources for the data broadcast application as
retrieved from the data carousel, including the Java byte codes for the Xlet classes. Class
PrivateSectionParser retrieves the downloaded modules from the stream and adds the modules to the
ATSCUserToNetworkDownloadManager object. See [ATSC:A90] for a description of the data broadcast
standard. Downloaded Xlets and their data are transmitted using the referenced standard.

Classes in the HW abstraction layer manage the applications in accordance to the data broadcast
specification as well as the DASE view, where ‘application’ means Xlet. In keeping with the overall design
philosophy where the STB manages raw data and the HW abstraction provides semantic meaning,
responsibility for Xlet management lies in the HW abstraction. Support for the DASE application lifecycle
model is also provided by the HAL.

 24

Program_number x

Elementary Stream 1
 PID
 stream_type: DSM-CC async. Data
 association_tag_descriptor

Elementary Stream 2
 PID
 stream_type: DST / NRT

Program_ number y

EITs or DETs
Event loop
 source_id
 event_id
 title

ETTs
Event loop
 source_id
 event_id
 ext. description

VCT
VC loop
 program_number
 major_channel_number
 minor_channel_number
 source_id
 [service_location_descriptors]

DST
program_number

my_PID

Application loop

 app_id (URI)

 app type (DASE or UNKNOWN)

 Tap loop

 tap_id

 protocol_encapsulation

 association_tag

 [download_descriptor: downloadId]

 downloadId

 selector(): moduleId

A one-layer Data Carousel
downloadId

Module 1

 moduleId

 data

Module 2

…

unique

1

2

3

3
4

5

Fields in italics are duplicates
specific to our implementation

PMT

...

6

7

Figure 12 Data Service Discovery and Extraction

6.5.1 Data Broadcast Overview

 25

As in the rest of the simulation, DST data structures directly map the MPEG and ATSC structures.
However, three fields are duplicated in the DST class and are set at parsing time:

• The program_number of the PMT program containing the Data Service - This allows easy lookup
when matching association_tags between DST and PMT.

• The PID that carried the DST - Right now, this is used neither by the simulation nor by the HAL, but
will be used in later versions to implement application signaling.

• In DST Taps, the downloadId that identifies a Data Carousel.

There are different ways to relate ATSC and MPEG tables. The relationship arrows in Figure 12
illustrate the chosen method in our implementation:

• Arrow !: In the VCT, the program_number field associates a Virtual Channel with a list of
resources in the PMT, that is a PMT Program. We could have used the more convenient Service
Location Descriptors that are mandatory for terrestrial broadcast, but since they are optional in cable
broadcast, going through the PMT appeared to be a safer choice.

The set of MPEG-2 program map tables (PMTs) of a transport stream is stored as entries of an
array. Similarly the set of virtual channels of an ATSC virtual channel table (VCT) are also stored as entries
of an array. The program_number is the data element that relates the corresponding entries of these two
arrays, as shown in relationship ① of Figure 12. In this context a (ATSC) virtual channel and a (MPEG-2)
program are synonymous. Each PMT contains a list of resources (elementary streams) for the service
specified in that program. Each virtual channel of the VCT contains the same list of resources for terrestrial
broadcasts, but may not for cable. For this reason we chose to use the PMT for this information, and also
because it contains the added data element association_tag, when appropriate.

• Arrow ": In the PMT, there can be at most only one DST/NRT stream per Program, as a direct
consequence of a restriction to one Data Service per Virtual Channel (see [ATSC:A90]). If there is
such a stream, the PID permits to extract it from the Transport Stream and parse the DST (and
optionally the NRT which is not currently implemented in the NIST simulator).

A DSM-CC stream is specified by its PID data element within the list of streams of a program/virtual
channel. It is also labeled by an association_tag in the PMT that corresponds to an association_tag
in a Tap loop (application resources) of a DST. By searching the list of PMTs, using the program_number
and an association_tag from a DST, one can locate the PID of the corresponding DSM-CC stream. This
is shown in relationship ③ of Figure 12. By searching the list of DSM-CC streams, using a downloadid
from a DST, one can also locate the corresponding DSM-CC stream. This is shown in relationship ④ of
Figure 12. Specific parts of a DSM-CC stream (e.g., a module within a carousel) can be further referenced
via the selector() field, as shown in relationship ⑤ of Figure 12. One example is for an application
(service) carried in a DSM-CC stream as a carousel, where class files are carried in various carousel
modules, another module may contain a jar file and still other modules may contain data files.

• Arrow #: In the DST, each Tap structure (i.e. application resource description) has an
association_tag field. Coming back to the PMT, the association_tag is the key to retrieve
the PID of the elementary stream that carries the resource.

• Arrows $ and %: From this PID and optionally the download_descriptor (DST) we can extract
the resource from the Transport Stream (e.g. a Data Carousel), or only the part we need with the

 26

additional information contained in the selector() structure of the Tap (e.g. one module of a Data
Carousel).

Each virtual channel of a VCT also contains references to announcement tables. The Event
Information Tables (EITs) and the Data Event Tables (DETs) contain event (service - program or
application) information similar to a TV guide. The source_id of a virtual channel can be used to search all
the EITs and DETs to locate events applicable to that virtual channel, as shown in relationship ⑥ of Figure
12. For each event, the pair source_id and event_id can be used to search the list of Event Text Tables
(ETTs) to locate further announcement information about that event, as shown in relationship ⑦ of Figure
12.

DASE currently limits the number of data services per program/virtual channel to one, but this may
increase in future versions. Thus currently limiting a single data service table/ network resource table
(DST/NRT) stream per PMT. The appearance of an application within a DST/NRT stream signals the
initiation of a data service and the removal of that application from the DST/NRT stream signals the
termination of that data service. A DST/NRT stream is specified by its PID data element within the list of
streams of a program/virtual channel. By searching the list of DSTs, using the program_number and the
PID, one can locate the corresponding DST from a PMT. By searching the list of PMTs, using the
program_number and my_PID, one can locate the corresponding PMT from a DST. This is shown in
relationship ② of Figure 12.

Note: The download_id field in the Tap structure was added as a convenient shortcut when the
download_descriptor is not present.

Additional information about a Data Service (e.g. announcement and extended description) can be
found in the EIT/DET/ETT tables. The linkage happens through a common source_id value. Note that this
source_id value doesn’t necessarily uniquely identify one Virtual Channel, as opposed to the
major/minor_channel_number pair.

 27

Figure 13 Class Diagram for Data Service Extraction

6.5.2 Simulation Management of Data Broadcast
Figure 13 shows the diagram for the classes involved in data service parsing within the simulation.

Each downloaded module is stored within a collection inside the ATSCUserToNetworkDownloadManager
object. Also shown are the remaining classes used to store the information from the other ATSC tables in
addition to the Virtual Channel Table as discussed in Section 6.4. The definition of these classes can be
found in the stb.datatypes package.

6.5.2.1 ATSCDataServiceTablesManager
 This class, in package stb.managers, manages a collection of Data Service Tables. Each Data
Service Table describes one data service.

6.5.2.2 ATSCDataServiceTable
This class, in package stb.datatypes, contains the information for one Data Service Table, as

defined in the ATSC Data Broadcast standard [ATSC:A90]. One Data Service Table describes the
components of one data service.

6.5.2.3 ATSCDataEventTableManager
This class in package stb.managers manages a collection of Data Events. It is analogous to the

Data Event Table as defined by [ATSC:A90].

ATSCDat aS erviceTables Manag er

ATSCDataServiceTablesManager()
addTa ble()
get AppDescript ion ()
getCurrentTableList()
makeCurrent()
resetNew()

(from m a na ge rs)

ATSCB yt eStreamParser

ATSCByteStreamParser()
ATSCByteStreamParser()
dest roy ()
getCurrentATSCManagerSet()
getCurrentPhys icalChannelNumber()
getCu rrentTSID()
isAc tive()
lastActiveTimeMillis ()
readBytes()
ru n()
sendC omm and()

(from m a na ge rs)

ATSCInputStream
(from u ti l s)

P ri va teSect ion Parser
(from m a na ge rs)

ATSCDataServiceTable

program_number : int
pid : short
sdf_protocol_vers ion : short
vers ion_number : byte
service_private_data[] : by te

(from d atatyp es)

ATSCUserToNetworkDownloadManager

ATSCUserToNetworkDownloadManager()
addModule()
getCompleteScenariiLis t()
getCurrentOrganizedList()
getCurrentRawLis t()
rem oveScenario()
resetNew()
setModuleData()

(from m a na ge rs)

ATSCUserTo Network Do wnloadModule

dataReceived : boolean
pid : short
downloadId : long
transactionId : long
moduleId : int
moduleVers ion : short
moduleSize : long
moduleEndian : byte
privateData[] : by te
pts IsPre sent : boolean
pts : long
data[] : byte

(from d atatyp es)

ATSCDataEvent

source_id : int
dat a_id : sho rt
start_tim e : long
ETM _loc ation : by te
lengt h_in_seconds : int

(from d at a type s)

ATSCDataEventTableManager

ATSCDataEventTableManager()
addEvent()
getCurrentEventList()
makeCurrent()
resetNew()

(from m a na ge rs)

 28

6.5.2.4 ATSCDataEvent
This class, in package stb.datatypes, contains the information for one event of a Data Event

Table, as defined in the ATSC standard [ATSC:A90]. This class is a data repository only that maps the items
for a data event into the Java types.

6.5.2.5 ATSCUserToNetworkDownloadManager
This class is in package stb.managers. It manages a module repository for the DSM-CC User-To-

Network Download Scenario, as defined in the MPEG ISO/IEC 13818-1 standard and the ATSC Data
Broadcast standard [ATSC:A90]. It does a different task than managing an ATSC table, therefore, does not
extend ATSCTableManager. The functionality implemented is based on a one-layer version of the Data
Carousel.

This class downloads every module of each download scenario. Each time a module (DII+DDB) has
been completely downloaded, it moves from the new module repository to the current module repository.

6.5.2.6 ATSCUserToNetworkDownloadModule
This class contains the description and the data for one module of a DSM-CC User-To-Network

Download Scenario, as defined in the MPEG ISO/IEC 13818-6 and [ATSC:A65] Data Broadcast
specifications. This data structure is designed for merging information contained in DII and DDB messages.
This is appropriate for DSM-CC Download Scenarios that exclude the possibility of a return channel (the
data carousel scenario and, without return channel, non-flow-controlled download scenario). This class is
part of the stb.datatypes package.

6.6 JMF

6.6.1 Hardware Simulation
Describe PCR Manager and tuning here.

6.6.2 MPEGDecoderManager

This standard simulation manager establishes the link between the Java Simulation environment
and the various components simulating the hardware.

Class MPEGDecoderManager implements some of the interfaces described above. DataManager
creates one instance at startup and makes references to it available through its getDevice() method
(where Device is the name of the requested interface).

Currently implemented interfaces:

• VideoDecoder: establishes a connection with the running PCRManager process and
provides access to the current PCR time.

• Demux: tuning within a stream and low-level audio track selection, via the parser's back
channel. Not Implemented.

• Tuner: Not implemented.

• TimeBase: provides access to the low-level timeline (PCR) a standard
javax.media.TimeBase (JMF) time base. Unlike the raw PCR timeline that can contain
discontinuities, the time base provided is strictly monotonic, even across discontinuities,

 29

tuning and other interruption. However it always ticks at the same pace as the currently
displayed video stream.

6.6.3 PCRManagerPullSourceStream
This class wraps the simulation/emulation components into a standard JMF object. In order to

comply with the standard JMF architecture, the read() method returns the current PCR time serialized as 8
byte packets.

In addition to the PullSourceStream interface, this object also acts as a pass-through to the
objects implementing the VideoDecoder, Tuner, Demux and TimeBase interfaces. If performance is an
issue, it is recommended to use the VideoDecoder or TimeBase interfaces to read the current media time
to avoid serialization overhead -- at the cost of portability, of course.

6.6.4 DataSource
The Java Media Framework uses a DataSource during the instantiation process. It is associated

during initialization to the "pcr:" protocol; MRLs requesting a "pcr:" object are processed by a new
DataSource, that parses the MRL and in turn instantiates a PullSourceStream accordingly. See the
official JMF Documentation for details.

6.6.5 Handler

6.6.6 DAVIC Controls

Player
(JavaTV + Davic)

A/V Services (Hardware or simulated)
Tuning Demux PCR Rendering

API Implementation

Xlet

JavaTV Media API, DAVIC Media API

Convention: since there are multiple
ways to control the hardware (eg. tuning
and selection) use the player as single
access point to the hardware.

Figure 14 JMF Support and Extensions

 30

7. REAL-TIME EMULATION

 31

8. COMMERCIAL STB

 32

9. HARDWARE ABSTRACTION LAYER

XletManager

XletManager()
addRegistryListener()
deregisterApplication()
destroyXlet()
getApplicationInformation()
getApplicationInformation()
getApplicationProxies()
getApplicationProxy()
getRegistryType()
initXlet()
loadXlet()
moveXletThread()
notifyListeners()
pauseXlet()
regis terApplication()
removeRegistryListener()
removeXletThread()
startApplication()
startXlet()
xletStateChange()

(from hwa bstract)

STBEnvironment

STBEnvironment()
getHwAbstractManager()
getHwManager()

(f rom h wa bstract)

DataManager

verbose : boolean
showRequestedFlag : boolean

DataManager()
DataManager()
STBChange()
addDat aManagerLis t ener()
addUser()
controllerUpdate()
createPlayer()
findUser()
getCarouselManager()
getCommonSettings()
get Conta iner()
getCurrentUserLis t()
getDBApplicationManager()
getDemux()
get Event In format ionTable()
getExtendedTextTable()
getMainServiceContext()
getPlayer()
getProgramMapTable()
getRatingRegionTable()
getReceiverInfo()
getSTBSimManager()
getTimeBase()
getUserRegistry()
getVideoDecoder()
getVirtualChannelTable()
get XletManager()
hidePlayer()
initialize()
removeConta iner()
saveData()
setCommonSettings()
showPlayer()
updateUser()

(from hwa bstract)

CarouselManager

CarouselManager()
CarouselManager()
addList ener()
class$()
extractModuleData()
initialize()
proceedNewModule()
removeListener()
uriLookUp()

(from hwa bstract)

Figure 15 Main HAL Classes

9.1 Introduction
Figure 15 shows the main classes within the hardware abstraction layer. Even though classes

outside of the HAL implement most of the API, a significant portion of the API is implemented by the HAL.
For example, the Application Registry, the manager of DASE Applications, is implemented in the HAL. The
reason for this is that there needs to be a single instance of the Application Registry, and it is therefore
created in the HAL in order provide a consistent view of the registry to all Xlets. In most cases, API
implementation objects do not exist unless an Xlet is running. However, in many cases the implementation

 33

object needs to be created before any Xlet runs. Therefore, these objects are created and managed by the
HAL DataManager object discussed below.

9.2 STB Environment

Class STBEnvironment manages information such STB state information, and User Profile
information. This class communicates with the STB simulation in order to not only retrieve the STB data, but
also to provide updates to the STB. An example of an update would be a new current User.

9.3 HAL Data Manager

The Hardware Abstraction Layer DataManager is the access point to all other HAL managers. It is
also the access point for the API implementation to all data coming from the underlying STB implementation.
This data includes ATSC PSIP information, and MPEG table data. Other STB information is accessed via
the STBEnvironment class discussed in Section 9.2.

The DataManager listens for all STBChangeEvents (notification of changes to data maintained by
the STB) and notifies any registered listeners of these changes. For example, the API implementation
classes can register to be notified of changes in the User Registry

9.4 MPEG/PSIP Table Management

Figure 16 PSIP Tables in the HAL

9.4.1 Introduction

THIS SECTION NEEDS CLEANED UP…

aDataServiceArray []

V irtualChannel

V irt ualChannel()
getAccess Co ntrolled()
getCarrierFrequenc y()
getChanne lTSID()
getDel iverySys temType()
getDescr ip tors()
getE TM Locat ion ()
getHidden()
getM ajorC hanne lNum ber()
getM in orC hanne lNum ber()
getModulationMode()
getOut OfBand()
getPathSelec t()
getProgramElements ()
getProgramNum ber()
getServiceType()
getShortName()
getSourceId()

(from h wabstract)

ATSCVirtualChannel
(from da ta ty pes)

V irtualChannelTable

VirtualChannelTable()
getV irtualChannel()
getV irtualChannel()
getV irtualChannels()

(from h wabstract)

aVirtualChannelTable[]

RatingRegion

RatingRegion()
getDimensions()
getRatingRegion()
getRatingRegionName()

(from hwabstract)

ATSCR at ingRegionTable
(from da ta types)

RatingRegionTable

R at ingReg ionTable ()
getRatingRegion()
getR atingRegions()

(from hwabstract)

aRatingRegionTable[]

Event

Event()
get Descript ors ()
getE TMLo cation()
get EndTime()
getEndTimeAsDate()
get Event Id()
getLengthInSe conds()
get Source Id()
getStartTime()
get Star tTim eAsDate()
getTitleTex t()

(from hwabstract)

ATSCEventInformation
(from d ata ty pes)

EventInformationTable

EventInform at ionTable()
getEve nt()
getEve nts()
getEve nts()

(from hwabstract)

anEven tInfo rm ationTable[]

Ex t endedTex tM essage

Ex tendedTextMessage()
getEventId()
getEx tendedTex tMessage()
getNature()
getSourceId()

(f rom h wabstract)

ATSCExt endedTextM essage
(from da tatypes)

Ex tendedTextTable

Ex tendedTextTable()
getChannelExtende dTex tMess age()
getEx tendedTex tM essa ge()

(f rom h wabstract)

anEx tendedTextTable[]

ATSCDataE vent
(from da ta types)

HalDataEvent

getDataId()
getDescriptors ()
getETMLocation()
getEndTime()
getEndTimeAsDate()
getLengthInSeconds()
getSourceId()
getStartTime()
getStartTimeAsDate()
getTitleTex t()

(from hwabstract)

DataE ventTable

DataE ventTable()
getDataEvent()
getDataEvents ()
getDataEvents ()

(from hwabstract)

aDataEventTable[]

DataS erviceList

DataS erviceList()
getDataServices ()
getDataServices ()

(from hwabstract)

DataS ervice

DataService()
getApplicat ion()
getApplicat ions ()
get PrivateData()
getProgramNumber()
getSdfP rotocolV ers ion()
getServiceInfo()

(from hwabstract)

 34

Several classes with the HAL are used to provide access to the MPEG and PSIP table data
accessed from the STB environment. These HAL classes isolate the API implementation from the format of
the PSIP and MPRG table data as it is retrieved from the STB. Figure 16 shows the class diagram for the
HAL classes that provide access to the PSIP data. Also shown in the diagram are the simulation datatype
classes (those with a name beginning with ATSC).

9.4.2 Virtual Channels
Classes VirtualChannel and VirtualChannelTable are used to provide a standard interface

to the API implementation classes to access virtual channel information. The VirtualChannelTable
class encapsulates all of the functionality needed to map the virtual channel data format into a format
needed by the implementation. This constructor of this class takes a reference to the simulation manager
class. When porting takes place, the class will be rewritten to access the data in the manner native to the
STB. Therefore, not only does this class map the virtual channel data, it is also responsible for
encapsulating access to the STB.

Class VirtualChannel encapsulates the virtual channel data and provides accessor methods to
retrieve the channel data.

9.4.3 Data Services
The classes used to by HAL to provide data service retrieval are DataService,

DataServiceList, and DataEventTable.

The DataEventTable class provides an interface to the API implementation for Data Event
information. All accesses to the underlying hardware/simulation layer is through getXXX() accessor
methods. Overall the class provides the API with access to the simulation data in a convenient and portable
way. The DataEventTable is a list of all the Data Events found in all the Virtual Channels (i.e., the HAL
VirtualChannelTable).

The DataService class represents the information for a single Data Service as extracted from the
Data Service Table. Class DataServiceList manages the list of DataService objects and provides
consistent access to the list.

9.4.4 Event Information
HAL classes Event and EventInformationTable provide access to the Event Information Table

(EIT). Class Event represents a single event take from the EIT. Retrieval of the event information is
provided by accessor methods.

The EventInformationTable class provides an interface to the API implementation for Event
information. All accesses to the underlying hardware/simulation layer is through getXXX() accessor
methods. Overall the class provides the API with access to the STB data in a convenient and portable way.

9.4.5 Rating Information

There are several classes involved in providing Rating Region Table (RRT) information. These
classes are RatedDimension, RatedRegion, RatingRegion, RatingRegionTable, and
LocalRatingRegion. The RatedDimension class represents an instance of a rating dimension. The
RatedRegion class represents an instance of a rating region. Class RatingRegion represents an
instance of a rating region. A rating region may have multiple rating dimensions.

The RatingRegionTable class provides an interface to the API implementation for RRT
information. All accesses to the underlying hardware/simulation layer is through getXXX() methods. Overall
the class provides the API with access to the simulation data in a convenient and portable way. The class
makes use of classes RatingRegion and Dimension that reflect the underlying stream structure of the

 35

data as described in [ATSC:A65]. The information here represents data that is intended to be index into. For
example, the RRT may contain a Dimension called MPAA that contains a rating table like, G, PG, PG-13,
etc. Meta-data from rating descriptors can index into this data to obtain rating information about a Program
or Service.

9.4.6 Descriptors

9.4.7 Extended Text Messages
The ExtendedTextMessage and ExtendedTextTable classes are used to access the Extended

Text Table (ETT) information. Class ExtendedTextMessage represents a single entry of the Extended
Text Table. Among others attributes, it holds the extended text message associated with a channel or event
(EIT or DET).

The ExtendedTextTable class provides an interface to the API implementation for Extended Text
Table (ETT) information. All accesses to the underlying hardware/simulation layer is through getXXX()
methods. Overall the class provides the API with access to the simulation data in a convenient and portable
way.

9.5 Data Broadcast

 36

Figure 17 HAL Data Broadcast Classes

9.5.1 Description of Data Broadcast Classes in the HAL
The data broadcast standard is defined in [ATSC:A90]. Within the hardware abstraction layer, the

broadcast data is managed in a manner that corresponds to the Data Carousel mechanism specified in
[ATSC:A90]. The classes used to manage the Data Broadcast are shown in Figure 17.

9.5.1.1 CarouselManager

The HAL CarouselManager manages access to the data carousel resources downloaded by the
underlying STB implementation. This class is designed to be instantiated and used by the HAL
DataManager class. It implements URI lookup through Data Carousels in memory and module extraction
based on a CarouselFileLocator (locator class internal to NIST implementation).

This class is only used to access Data Carousel modules that are associated with Carousel files or
other data broadcast scenarios. This class does not manage the content associated with broadcast
applications, such as Xlet class files. CarousleManager notifies the CarouselFile classes of changes in
the Carousel file received by the STB environment.

DBApplicationM anager

D BApplicationM anager()
D BApplicationM anager()
b uil dAppLi s tFrom DST()
c lass $()
e x trac tA pp li cat ionFrom DST()
e x trac tDas eAppli cat io nFrom DST()
e x trac tXletClas sDataFrom Tap()
g etA ppLi st ()
g etA ppLi st ()
g etDaseA pp List ()
g etDaseA pp List ()
ini ti al ize ()
proceedDSTChange()
p rocee dNewModu le()

(from hwa bstract)

CarouselM anager

CarouselM anager()
CarouselM anager()
addLis te ner()
c la ss$()
ex trac tM oduleData()
ini t ial ize()
proc eedNewMo dule ()
rem ove Lis t ener()
uriLookUp()

(from hwa bstract)

CarouselM odule

CarouselM odule()
CarouselM odule()
c lass$()
get ContentTy pe()
getDownloadId()
getM oduleData()
getM oduleId()
getM oduleVers ion()
getTS ID()
get Uri()
toS tring()

(from hwa bstract)

DBAp plication Co ntent

DBApplicationContent()
equals ()
getAppId()
getAppIdDescription()
getP rogram Num ber()
getTs id()
hashCode()

(from hwa bstract)

DBDaseApplicationContent

DB DaseAppl icati onCont ent()
DB DaseAppl icati onCont ent()
c lass$()
getAppIdUri()
get Cla s s Id ()
getC la s sPath()
getContentType()
getEntry Classes()
getLevel()
getP rofi le()
getTask Prio ri ty ()
getTask Scope()
getTitle()

(from hwa bstract)

DBApplicationContentFac tory

DBApplicationContentFac tory ()
buildAppLis tFrom DST()
c lass$()
c reateDBApplicationContent()
ex trac tXletClassDataFrom Tap()

(from hwa bstract)

 37

9.5.1.2 CarouselModule
This class is a repository for data loaded out of the data carousel. It maps data from the underlying

STB implementation into a form useful to the API implementation. This class stores all the metadata
associated with the Carousel module, such as version, URI, etc.

9.5.1.3 DBDaseApplicationContent
This class is a data repository for storing information associated with a data broadcast application

and related DASE bindings. It extends the DBApplicationContent class with DASE-specific information,
such as Xlet class information.

9.5.1.4 DBApplicationContentFactory
This class creates DBApplicationContent objects from the information contained in the Data

Service Table. There is also a method to create the XletClassData object for an Xlet by extracting the
class byte codes from the STB environment.

9.5.1.5 DBApplicationContent
The parent class that is a data repository for data broadcast applications. It stores information

specified by the data broadcast standard, such as application ID and program number.

9.5.1.6 DBApplicationManager

The HAL DBApplicationManager manages a list of applications in the ATSC Data Broadcast
sense1 as extracted from a Data Service Table. It gives read access to that list with a couple of methods
(mainly used by the API implementation of the javatv.service.selection package). It also transmits
notifications and, when needed, application resources to the XletManager. For example, when all
application resources of a new application are received or when an application disappears from the DST.

1 Defined in ATSC A/90 specification.

 38

9.6 Application Management

DASE Procedural Applications
RegistryListeners CarouselFileListeners

DASE API Implementation
ChangeListeners

DataManager

Xlet
Manager

Application
Manager

Carousel
Manager

Set-Top Box Simulation

Data Carousel or
DST Change

Data Carousel Change

STBChange
Event

ChangeEvent

CarouselFile
ChangeEvent

Application data
& signaling

Application
Registry

Event

User Input Transport Stream

API call

Application Data
Extraction

PSIP
Data
Extraction

Module
Data
Extraction

1

2

3
4

5

Legend:

 Thin arrows indicate access calls.

 Thick arrows indicate event notifications.

1: STBEnvironment.getHwManager()
2: DataManager.getXletManager()
3: DataManager.getApplicationManager()
4: DataManager.getSTBSimManager()
5: DataManager.getCarouselManager()

CarouselFile

URI lookup,
Data
Extraction

Figure 18 HAL Data Broadcast Interactions

 39

9.6.1 Introduction

This section gives a more detailed description of all actions taken by both Simulation and HAL when
receiving an application, from parsing the Transport Stream to launching Xlets and notifying API
components. Figure 18 shows the interactions and relationships between the major components of the HAL
involved in Data Broadcast application and Carousel management.

The context is a simple use case, actually the only one currently implemented by our Data
Generator on one side, and our DASE PA platform on the other side. Basically, a new application is coming
through the Transport Stream. Here are some characteristics:

• Everything is in one Transport Stream (no use of NRT).

• Data Carousels carry all application resources.

The steps involved in processing the DST are as follows:

1. A new DST is received and parsed by the Simulation, which in turns notifies the HAL. The HAL then
examines the DST: if there’s no new application (since previous DST in the same PMT Program),
the process stops there.

2. If there is a new application, HAL checks if all resources are present by going through the Tap loop
(arrows #, $, and % in Figure 18). For each Tap:

2.1. Arrow #: The HAL retrieves the PMT Program corresponding to this Data Service thanks to the
program_number field in the DST. In that Program, the loop of elementary streams is then
searched for an Association Tag Descriptor that matches with the association_tag of the
Tap.

2.2. Arrows # and $: Using the download_id field of the Tap, the HAL locates the Data Carousel
in the buffer. If the Tap points to an entire Data Carousel, HAL checks that Data Carousel has
been completely received.

2.3. Arrow %: If the Tap points only to a single module, the HAL checks if that specific module has
been received (Download Info Indication (DII) message and associated data).

3. If all resources indicated by the DST for the new application have been received, the HAL considers it
as completely received and starts launching its entry points (Xlets).

4. In parallel to the treatment of the DST, Data Carousel modules are treated in a straightforward way.
Each time a DII and its associated data are received, the Simulation considers the module as
received and gives a notification to the HAL, which in turns notifies API-level objects listening for a
change to that module (new module or new version of an existing module).

Also shown in Figure 18 is the Carousel Manager. When the HAL DataManager needs to access
modules for a downloaded file (the data broadcast scenario) it relies in the CarouselManager to relay
the module data from the STB environment.

 40

Figure 19 Class Diagram for Xlet Management

9.6.2 Xlet Management Classes

Figure 19 shows the classes involved in Xlet management. The following sections describe each
class in more detail.

Xlet ClassL oader

XletClassLoader()
XletClassLoader()
findClass ()
init ialize()

(fro m h wab stra ct)

DBAppli cati onCont ent

DBApplicationContent()
equals ()
getAppId()
getAppIdDescript ion()
getP rogram Num ber()
getTs id()
hashCode()

(fro m h wab stra ct)

XletC lassData

c lassBy tes [] : by te
autoLaunch : boolean

XletClassData()
equals ()

(fro m h wab stra ct)

XletM anager

XletM anager()
addReg is t ryLis t ener()
deregis terApplication()
des troyXlet()
getApplicationInform ation()
getApplicationInform ation()
getAppl icatio nP rox ies ()
get Appl icat io nP roxy ()
getRegi s tryType()
i nitXlet()
l oadXlet()
m oveXletThread()
not ifyLi ste ners ()
pauseXlet()
regis terAp pli cat ion ()
rem oveRegis tryLis tener()
removeXl etThread()
s tartApplicat ion()
s tartXlet()
x letS tateChange()

(fro m h wab stra ct)

DBApplicationM anager

DBApplicationM anager()
DBApplicationM anager()
buildA ppL ist From DST()
c lass$()
ex trac t Appli cat ion From DST()
ex trac tDaseApplicat ionFrom DST()
ex trac tXle tClassDataFrom Tap()
getAppList ()
getAppList ()
getDaseA ppLis t()
getDaseA ppLis t()
in it ial ize()
proceedDS TChange()
pro ceedN ewMo dule()

(fro m h wab stra ct)

DBDaseA ppli cati onCont ent

DBDaseA pplicationContent()
DBDaseA pplicationContent()
c lass$()
get Ap pIdUr i()
get Class Id()
getClassPath()
get Co ntentType()
getEntryClasses ()
getLevel()
getP rofile()
getTaskPriority ()
get TaskScope()
getTitle()

(fro m h wab stra ct)

XletThread

XletTh read()
appS tateChanged()
des troyXlet()
equals ()
getAppS tate()
get AppS tat esS uppor ted()
getAppS tatus ()
getApplicationInform ation()
get Applicat ion Proxy ()
getC urrentS tateNam e()
getServiceContex t()
getXletContainer()
getXletLocator()
getXletNam e()
i nitXlet()
i sAc tive()
pauseXlet()
resum eXlet()
run()
set CurrentS t ate()

(fro m h wab stra ct)

DB Appl ica t ionConte ntFac t ory

DBApplicationContentFac tory ()
buildA ppLis tFrom DST()
c lass$()
c reateDBApplicat ionContent()
ex trac tXletClassDataFrom Tap()

(fro m h wab stra ct)

 41

9.6.2.1 XletManager

The HAL XletManager manages Xlets (load, init, start, pause and destroy), based on the signals
and aggregated data it receives from the DBApplicationManager. It implements
ort.atsc.ApplicationRegistry, which includes managing and notifying a list of
org.atsc.RegistryListeners. Xlets are controlled via the XletThread object that is created by the
XletManager. The object centralizes the information for the Xlet, such as the Xlet’s state, resource
requirements, and other information.

9.6.2.2 XletThread
This class Centralizes information about the Xlet, such as its current state and status as maintained

by the Xlet itself, the proxy objects, and the Locator for the Xlet. It is sub-classed from Thread and runs as
a separate thread in the JVM.

9.6.2.3 XletClassLoader
This class implements the class loader for Xlets. The XletManager creates an object of this class

for each Xlet. This class is a sub-class of java.lang.ClassLoader. The main responsibility of this class
is to create the Java classes from the byte codes that were downloaded for the Xlet’s classes. The
delegation model is used where the parent class loader attempts to load the classes before calling on the
Xlet class loader. Therefore, this class loader loads only classes that were downloaded by the system. The
system class loader loads all other classes, such as the API implementation classes and P-Java classes.

Class XletClassLoader overrides method findClass() in order to load the Xlet classes. This
method searches the private collection of byte codes downloaded for the Xlet. If the class is not found, a
ClassNotFound exception object is thrown.

9.6.2.4 XletClassData
This class is a repository for the byte codes of a class that is part of an Xlet. It also stores

information to indicate whether the class is the entry and launch point for an Xlet.

9.6.3 Xlet Resource Loading
Figure 19 shows the classes involved in Xlet loading and management. In the HAL, an Xlet is a form

of Data Broadcast application. Therefore, loading of the Xlet’s resources (class files, etc.) relies on the Data
Broadcast classes introduced in Section 9.5.1. This section describes how these classes interact with the
XletManager and XletThread classes.

Need more text here….

9.7 JMF Player

9.7.1 Abstract Decoder

 42

Tuner Demux

Audio

ATSC
Generic

MPEG
Decoder Renderer

PCR
Clock

Video

Timer

Figure 20 Set-Top Box Decoder Model

Figure 20 illustrates the general architecture of a set-top box hardware decoder. Although actual
implementation choices may differ, a complete system should provide all the shown services, either in
hardware or software (for example, many low-cost PC-based DTV decoders decode the AC-3 audio tracks
in software).

In order to simplify porting of the Prototype Implementation to other platforms, we identified the following
core services:

• Tuner: tuning services to select a specific transport stream.

• Demultiplexer (Demux): demultiplex the MPEG stream into elementary streams and route them
to other blocks.

• Audio: audio decoding.

• Video:

o Decoding of the MPEG video stream

o Program Clock Reference: hardware clock phase-locked to the PCR timestamps within
the video stream.

o Timer: programmed alarm service associated with the clock.

o Rendering.

This model identifies the lowest common denominator to low-level functions used by the Prototype
Implementation, for convenience only. It is not intended to replace more extensive APIs such as JavaTV.

 43

9.7.2 Java Interfaces

VideoCont inuityEvent

continuityCount : i nt

V ideoC ontinuityEvent()
getContinuityCount()
get Source ()

(from ap i)

A larmTimerEvent

id : int
d ate : lon g

A larm TimerEvent ()
A larm TimerEvent ()
g etDate()
g etID()

(fro m ap i)

A larmTimerException

AlarmTimerException()

(from ap i)

FeatureNotAvailableException

FeatureNotAvailableException()
FeatureNotAvailableException()

(from ap i)

V ide oContinui tyLis t ener

continuityUpda te()

(from ap i)

<<Interface>>

AlarmTimer

can cel()
noti fy()

(from ap i)

<<Interface>>
AlarmTimerLis tener

cancel()
notify()

(from ap i)

<<Interface>>

AudioDecoder

getVolume()
setVolume()

(from ap i)

<<Interface>>

Demux

getATSCInputS tream()
getAud ioPID()
getE lementaryInputStream()
getV ideoPID()
routeElementaryStream()
setAud ioPID()
setV ideoPID()

(from ap i)

<<Interface>>

Tuner

getTSID()
getTSIDList()
nex t()
previous()
setTSID()

(from ap i)

<<Interface>>
VideoDecoder

addContinui tyLis tener()
getComponent()
getCon tinuit yCount ()
getP CRNanoseconds()
getPC RValue()
isVal id()
removeContinuityLis tener()

(from ap i)

<<Inter face>>

Figure 21 Java Interfaces for Decoder Components

The abstract model described in the previous section translates to a set of abstract hardware
interfaces declared in gov.nist.hwabstract.api. Continuity (breaks in the PCR timeline) and Alarm
events are handled via the usual Listener-Event mechanism. See the Javadocs for details(NO, do it
here –WJS).

 44

Media

Parser PCRManager

Audio Decoder
N/A

MPEGDecoderManagerDataManager

SourceStream

DataSource

Handler

DAVIC
Controls

PCR

Simulation

Portable

 45

10. API IMPLEMENTATION

10.1 Locators

XletLoc ator

XletLoc ator()
XletLoc ator()
equals ()
getClass Id()
getE ventID()
getP rogram Num ber()
getS ourceID()
getTransportS tream ID()
getType()
getXletThread()
hasM ultipleTrans form ations()
setXletThread()
toE xternalForm ()

(from loca to r)

CarouselFileLocator

isDirec toryLocator : boolean
lidUriB ased : boolean

CarouselFileLocator()
CarouselFileLocator()
CarouselFileLocator()
equals ()
getCanonicalUri()
getDirec toryContents ()
getDownloadId()
getM oduleId()
getTransportS tream ID()
getType()
getUri()
hasM ultipleTrans form ations()
init ialize()
init ialize()
isLidUriB ased()
isLoc atingDirec tory ()
isLoc atingFile()
toE xternalForm ()

(fro m l oca to r)

Loc atorClas s

LocatorClass()
getE ventID()
getP rogram Num ber()
getS ourceID()
getTransportS tream ID()
getType()
hasM ultipleTrans form ations()
toE xternalForm ()

(fr om loca to r)

E ventLoc ator

netwo rkDepen dentL ocato r : boolean
carrierFrequenc y : long
channe lTS ID : i nt
sourceId : i nt
even tId : i nt
deliveryS ys tem Type : int

E vent Locat or()
E vent Locat or()
equals ()
getCarrierFrequency()
getDe liverySy s temTy pe()
getDescriptors ()
getE ventID()
getProgramNum ber()
getSo urceID()
get Tit le Text()
getTransportS tream ID()
getType()
getV irtualChannel()
hasM ultipleTrans form ations()
ig etE ve ntID()
ig etProgram Num ber()
ig etSourceID()
ig etTranspor tS t rea mID()
toE xt ernalFo rm ()

(from loca to r)

S erviceCom ponentLocator

S erviceCom pone ntLoc ator ()
S erviceCom pone ntLoc ator ()
getE lem enta ryP ID()
getS t rea mTyp e()
getType()

(fro m loca to r)

S erviceLocator

networkDepend entLo cator : b oole an
m ajorChannelNum ber : short
m inorChannelNum ber : short
carrierFrequenc y : long
channelTS ID : i nt
prog ram Numb er : int
servic eType : by te
sourceId : i nt
deliveryS yst em Type : int

S erviceLocator()
S erviceLocator()
S erviceLocator()
equals ()
getCarrierFrequency()
getDel iverySy s te mTyp e()
getDescriptors ()
getE ventID()
getM ajorC ha nnelNu m ber()
getM inorC ha nnelNu m ber()
getP rogramNum ber()
getS ervic eTyp e()
getS ho rt Name()
getS ou rceID()
getTransp ortS treamID()
getType()
getV irt ualChannel()
hasM ult ipleTransform at ions()
ige tE ven tID()
ige tPro gram Num ber()
ige tSourceID()
ige tTranspor tS t ream ID()
toE xt ern alForm ()

(fro m loca to r)
UnboundLocator

Unbo undLocat or()
ha sMult ipl eTransform at ions ()
toE xte rnalForm()

(from loca to r)

Locator

hasM ultipleTrans form ations()
toE xternalForm ()

(fro m loca to r)

<< Interface>>
A TSC Locat or

getE ventID()
getS ourceID()

(from si)

<< Int erface>>
M P EGLocator

getP rogram Num ber()
getTransportS tream ID()

(from si)

<< Interface>>

Figure 22 Locator Implementation

 46

Locators are widely used throughout the JavaTV and DASE APIs for communicating implementation
dependent information about a resource in an independent manner. Figure 22 shows the class diagram for
the implementation of Locators in the DASE RI.

There are two forms of Locators in the implementation. One form is a Locator that contains

information about a specific resource, such as Service or Xlet. This form of Locator is also referred to as a
bound locator. The other form of Locator is unbound and does not contain any information about a resource,
but may represent a resource not yet mapped into a specific stream component, for example. A Collection of
bound Locators can be obtained from a unbound Locator in many instances.

 47

10.2 The Management API

O bjec tS t ate s

addS tateChangeLis tener()
getCurrentState()
getCurrentStatus()
getS tatesSupported()
removeStateChangeLis tener()

(from m anag em ent)

<< Interface>>

Receiver

c learA larm()
getAdminis trativeS tate()
getA larm Status()
getAvailabilityS tatus()
getCurrentState()
getCurrentStatus()
getOperationalState()
getP roceduralS tatus()
getS tatesSupported()
getUsageState()

(from system)

STBEnvironm ent

STBEnvironm ent ()
getHw Abst ra c tM anager()
getHwManager()

(from hwab stra ct)

FUTURE: Currently , DataManager provides Recevier info, but
this will change to have STBEnvironment do it by moving
m ethog getReceiverInfo from DataM anager to STBEnvironm ent.

ApplicationContex t

getDataServiceDescription()
s tateChanged()

(from app l i ca tion)

<< Interface>>

Appli cationCont ex t Class

getServiceContex t()
s tateChanged()
getDataServiceDescription()
getXletP roperty ()
notifyDestroyed()
notifyPaused()
resum eRequest()

(from app l i ca tion)

XletCont ext

getXlet P rope rty ()
notifyDestroyed()
notifyP aused()
resu meRequ est()

(from xle t)

<< Interface>>

ApplicationProxy

getLocator()
resum e()
s top()
suspend()

(from app l i ca tion)

<< In ter fac e>>

Appli cationCom pon entP resenterP roxyClass

getAdminis trativeS tate()
getA larm Status()
c learA larm()
getCurrentState()
getCurrentStatus()
getOperationalState()
getP roceduralS tatus()
getS tatesSupported()
getUsageState()

(from app l i ca tion)
Xl etThread

ap pStat e : i nt
ap pS tat us : i nt
ap pSupportedS t ate : short
ap pSupportedS t atus : short

ap pS tat eChanged()
ge tAppS t ate()
getAppS tatesSupported()
ge tAppS t atus()

(from hwab stra ct)

ApplicationCom ponentP resenterP roxy
(from app l i ca tion)

<< In ter fac e>>

Figure 23 Management API Implementation

The Management API, specified in package org.atsc.management, is implemented by various
packages inside the NIST RI. Also, Xlets themselves can support the Management states and statuses via
the ApplicationContext object. The values of the states and statuses reported by the Xlet are
maintained in the XletThread object associated with the Xlet. Section 9.6.2.2 discusses the XletThread

 48

class. Figure 23 shows how the state and status information for an Xlet is maintained within the API
implementation and how that information is retrieved via the ApplicationProxy interface.

 Several classes in the NIST RI provide support to classes that implement the
ObjectStates interface in order to provide a minimal level of support for Management as suggested by
the DASE PAE standard. For example, HAL class STBEnvironment maps information from the underlying
STB environment into Management states and statuses. The class org.atsc.system.Receiver, which
implements interface ObjectStates, retrieves this information in order to support the ObjectStates
interface. The actual mapping of STB states and statuses takes place in the STBEnvironment.

10.3 Service APIs

10.3.1 Overview
The Service API package gives the Xlet access to the Service Information (SI) database and the

mechanism to tune to (select) individual Services. The parent javax.tv.service package defines what a
Service is and provides the access class SIManager to discover the available Services. Sub-packages of
javax.tv.service include navigation that allows the Xlet to navigate the collection of Services. The guide
package provides detailed information about the Services suitable for an Electronic Program Guide. Service
selection provides the mechanisms to tune to and start selected Services. The transport package isolates
some of the specific delivery media information (currently MPEG-2).

10.3.2 Asynchronous Service Information Retrieval
The Service package provides mechanisms to retrieve data from the SI database asynchronously.

Methods that begin with the retrieve prefix provide this asynchronous data retrieval. The NIST
implementation handles asynchronous methods by creating a class that is a separate thread. The initial call
to the retrieve method will create and start the new thread. The call will then return immediately. The
asynchronous thread will retrieve the data from the SI database and will notify listeners of the outcome.
(Provide generic code for the general solution).

10.3.3 Package javax.tv.service

Specification Implementation Mapping Level
Interfaces
DeliverySystemDef
Service gov.nist.service.ServiceClass
ServiceComponent gov.nist.service.ServiceComponentClass
ServiceMinorNumber extended by javax.tv.Service
ServiceNumber extended by javax.tv.Service
SIChangeListener
SIElement extended by many interfaces
SIRequest
SIRequestor
SIRetrievable
Classes
DeliverySystemType
ReadPermission
ServiceInformationType
ServiceType
SIChangeEvent
SIChangeType

 49

SIRequestFailureType
StreamType
Exceptions
SIException

Table 4 Service Implementation Mapping

10.3.4 Package javax.tv.service.guide

10.3.4.1 Guide UML Diagram

The root for obtaining guide information is the ServiceDetails object. The ServiceDetails object will
contain a ProgramSchedule that provides the mechanisms for retrieving ProgramEvents. ProgramEvents
are retrieve asynchronously. A Xlet will make a call to the ProgramSchedule object to obtain certain events.
This call will return immediately with a SIRequest object. The SIRequest object is used to later retrieve the
desired information. ProgramSchedule relies on a set of asynchronous retrieve classes to handle the data
retrieval. See section X.X on the implementation of asynchronous methods.

 50

Figure 24 Guide UML Diagram

The data used to implement Program Events is obtained from the HAL EventInformationTable and
Event classes. The EventInformationTable (EIT) contains the aggregate of Events across Virtual Channels.
Events can be retrieve from the EIT via the source_id, which will return all the Events for a given virtual
channel. Events can also be retrieved individually with a source_id and event_id.

10.3.4.2 Specification to Implementation Mapping

Program ScheduleClass
(fro m gu id e)

Cont ent Ra tingAdvisoryClass
(fro m gu id e)

RetrieveComponents
(fro m gu id e)

RetrieveCurrent Event
(fro m gu id e)

RetrieveDescription
(fro m gu id e)

Retri eveEvent
(fro m gu id e)

R etrieveFutu reEve nt
(fro m gu id e)

RetrieveFutureEvents
(f ro m gu id e)

RetrieveNextEvent
(fro m gu id e)

Program EventDescription

getProgram EventDescription()

(fro m gu id e)

<<Interface>>

EventInform at ionTable

EventInform ationTable()
getEvent()
getEvents ()
getEvents ()

(fro m hwab stract)

P rogram EventDescriptionClass
(fro m gu id e)

Program Event

getDuration()
getEndTim e()
getNam e()
getRat ing()
getService()
getS t artTime()
retrieve Com pone nts()
retrieve Des cription()

(f ro m g u ide)

<<Interface>>

Event

Event ()
getDescriptors ()
getETM Loca tion()
getEndTim e()
getEn dTim eAsDate()
getEventId()
getLength InSeco nds()
getSourceId()
get St ar tTime()
getS tartTim eAsDate()
getTitleText()

(fro m hwab stract)

P rogram EventClass
(fro m gu id e)

C ontentRatingAdvisory

exceeds()
getDimen s ionNam es()
getDisplayText ()
getRating Level()
getRat ing Text()

(fro m gu id e)

<<Interface>> Program Schedule

addListen er()
rem oveLis tener()
retrieveCurrentEvent()
retrieveEvent()
retrieveFutureEvent()
retrieveFutureEvents()
retrieveNextEvent()

(fro m gu id e)

<<In ter face >>

ServiceDetailsClass
(f ro m n a vi g at io n)

Se rviceDetails

getLongName()
getProgram Schedule()
getService()
getServiceType()
retrieveComponents ()
retrieveServiceDescription()

(f ro m n a vi g at io n)

<<Interface>>

Thread
(fro m la ng)

 51

Specification Implementation Mapping Level
Interfaces
ContentRatingAdvisory gov.nist.service.guide.ContentRatingAdvisoryClass
ProgramEvent gov.nist.service.guide.ProgramEventClass
ProgramEventDescription gov.nist.service.guide.PrgoramEventDescriptionClass
ProgramSchedule gov.nist.service.guide.ProgramScheduleClass
ProgramScheduleListener Place holder for new version of specification
Classes
ProgramScheduleChangeEvent
ProgramScheduleChangeType Place holder for new version of specification
ProgramScheduleEvent Place holder for new version of specification

Table 5 Guide Implementation Mapping

10.3.4.3 Implementation to ATSC/MPEG Table Mapping

API Object Attribute Implementation Simulation ATSC
ProgramEvent name gov.nist.service.guide

.ProgramEventClass,
gov.nist.hwabstract.E
ventInformationTable,
gov.nist.hwabstract.E
vent

 EIT

ProgramEvent duration EIT
ProgramEvent startTime EIT
ProgramEvent endTime EIT
ProgramEvent contentAdvisory content_advistory_

descriptor
ProgramEvent description EIT
ProgramEvent components VCT (service

location descriptor)
RatingDimension name RRT
RatingDimension # of Levels RRT
RatingDimension levelDescription RRT
ContentRatingAdvi
sory

dimensionName ContentRatingAdviso
ryClass

 content_advisory_d
escriptor

ContentRatingAdvi
sory

ratingValue content_advisory_d
escriptor

ContentRatingAdvi
sory

ratingText content_advisory_d
escriptor

ContentRatingAdvi
sory

displayText content_advisory_d
escriptor

Table 6 Guide Implementation to Transport Mapping

10.3.5 Package javax.tv.service.navigation

10.3.5.1 Overview
The navigation package provides the mechanisms to conveniently browse through the available

Services list. It arranges Services as collections and provides information about the Services.

 52

10.3.5.2 Specification to Implementation Mapping

Specification Implementation Mapping Level
Interfaces
CAIdentification
FavoriteServicesName
RatingDimension gov.nist.service.navigation.RatingDimensionClass
ServiceCollection gov.nist.service.navigation.ServiceCollectionClass
ServiceDescription ??
ServiceDetails gov.nist.service.navigation.ServiceDetailsClass
ServiceIterator gov.nist.service.navigation.ServiceIteratorClass
ServiceProviderInformation optionally implemented by ServiceDetails. Not implemented in the

NIST implmentation.

Classes
LocatorFilter gov.nist.service.navigation.LocatorFilter
PreferenceFilter gov.nist.service.navigation.PreferenceFilter

ServiceFilter gov.nist.service.navigation.ServiceFilter
ServiceTypeFilter gov.nist.service.navigation.ServiceTypeFilter
SIElementFilter gov.nist.service.navigation.SIElementFilter
SIManager gov.nist.service.navigation.SIManagerClass, supported by

RetrieveServiceDetails, RetriveService, RetrieveEvent

Exceptions
FilterNotSupportedException
NoSuchServiceException
SortNotAvailableException

Table 7 Navigation Implementation Mapping

10.3.6 Package javax.tv.service.selection

10.3.6.1 Overview

The Service Selection API allows applications the ability to control the presentation of Services in a
simple high-level way. It allows the presentation of a Service without the application having to know the
details of the Service.

 53

not presenting

destroyed

presentation
 pending

presenting

destroy()destroy()

(success)

destroy()

select()

stop()

stop()

select()

Figure 25 Service Context State Diagram

The application requesting a Service Selection first creates a ServiceContext object that will
control the selection and presentation of Services. Through the ServiceContext the application can select
Services and Service Components with the use of the Locators. Once the select() method is called the
component locators are discovered and the appropriate component presenters are instantiated to present
the components.

The Service Selection package gives a DASE application the ability to select a Service or a
component within a Service for presentation. If a Service is selected, then all components of that Service will
attempt to be presented. Services are presented and managed in a Service Context. There can be multiple
Service Contexts in a DASE receiver; however, the NIST Set-top box limits this to one Service Context,
which can be created by the DASE application or the implementation. The initial Service Context is created
by the implementation. This implies that when a DASE application begins to execute it can obtain a
reference to the implementation Service Context for controlling the presentation of Services.

A Service or Service Component is selected by first obtaining a reference to a Service Context
object. The DASE application can create a Service Context object via the Service Context Factory or by
obtaining a reference to the implementation Service Context. Using the Service Context the DASE
application can call the select method with a Service Locator or a Service Component Locator.

The Service Context Class manages the presentation of Services. The select and stop methods
control the starting and termination of Services. The Service Context uses the Service Context State object
to maintain its state. Table [Selection State] describes the possible states of a Service Context. Once a
Service or Service Component has been selected, the task of presenting it is handed off to the Service
Component Presenter class. The call to select returns to the DASE application, Service Component
Presenter is an asynchronous class.

The Service Component Presenter class first determines the intent of the DASE application by
examining the locators and the state of the Service Context. If the Service Context is in the
NOT_PRESENTING State, then SCP attempts to present the Service Components represented by the
Locators. SCP determines the resources needed and attempts to retain them. For example, if one of the
Locators map to an elementary video stream, then access to the Player is requested.

 54

ServiceComponentPresenter is a helper class for the select() method in ServiceContext.

This is an asynchronous class that initiates the presentation of a Service or individual
ServiceComponents. Based on the locator(s), ServiceComponentPresenter selects the appropriate
“engine” to present the ServiceComponent.

ServiceComponentPresenter is an asynchronous class that determines the selected Service
Components and plays them in the appropriate Handler, whether it is a JMF Player or Xlet presenter.

10.3.6.2 Access to the JMF Player

The Service Component Presenter will often need to obtain access to the JMF Player in order to
select components mapping to video and audio streams. Access to the Player is obtained in the HAL
DataManager.

The DataManager creates a Player (i.e., ServiceMediaHandler) object. It does this by calling

the createPlayer() method in the java.media.Manager class. The createPlayer() method takes
a MediaResourceLocator (MRL) object that is a URL that points to the actual system (i.e., real hardware)
player. Manager.createPlayer() searches the Locator path looking for a player implementation that
matches the one indicated by the URL. In the case of the NIST RI, it is the Handler implementation class. So
the Player in DataManager is really an instantiation of the Handler class in the HAL. Handler implements
ServiceMediaHandler, so the Player is a ServiceContentHandler. A ServiceContentHandler
object is accessible by the Xlet for manipulation of the JMF Player.

10.3.6.3 Policy and Issues

Future: Complete this table
Current State Action Outcome Result New State Comments
Presenting select() Success NormalContentEvent Presentation Pending
Presenting select() Success AlternativeContentEvent Presenting
Presenting select() Failure SelectionFailedEvent Presenting
Not Presenting select() Success NormalContentEvent Presentation Pending
Not Presenting select() Success AlternativeContentEvent Presenting
Not Presenting select() Failure SelectionFailedEvent Presenting
Destroyed select() None IlegalStateException Destroyed

Table 8 Service Context State Table
If the implementation restricts the number of ServiceContext objects to one and an application that

is already running:

Scenario: Another application tries to create a ServiceContext object

Solution 1: the ServiceContext creation fails

Solution 2: may succeed to get the ServiceContext object that is currently used by the
previous application. Then the ServiceContext object sends such as
PresentationTerminatedEvent to the previous application. Previous application should be
terminated by itself.

 55

Question: Should the new application kill the previous application? Is this the responsibility
of the Application Manager?

Figure 26 Service Selection UML Diagram

10.3.6.4 Service Selection UML Diagrams

The Service Selection implementation classes are shown in Figure 26.

S erviceContext

addLis tener()
des troy ()
getServiceContent Ha ndle rs()
getServiceLocator()
rem oveLis tener()
selec t()
selec t()
s top()

(fro m se le ctio n)

<< Interface>>

S erviceCon textFact oryClass

S erviceContextFactoryClass ()
c reateS erviceContex t()
getServiceContext()
getServiceContexts()

(fro m se le ctio n)

Handler
(f ro m x_ p cr)

M ediaSelec tControlClass
(fro m x_p cr)

A pplicationCom ponentPresenterP roxy
(fro m a p p l i ca tio n)

<< Int erface>>

A pplicationCom ponentPresenterP roxyClass
(fro m a p p l i ca tio n)

S ervi ceC ont extS t ate

S erviceContextS tate()
getS tateNam e()
toS tring()

(fro m se le ctio n)

S erviceContentHandler

getServiceContentLocators ()

(fro m se le ctio n)

<< Int erface>>

S erviceCom ponentPresenter

S erviceCom ponentPresenter()
addM ediaCom ponents()
playM ediaCom ponents ()
pos tS erviceContex tE vent()
presentXletCom ponents()
rem oveM ediaCom ponents ()
run()
setM ediaS elec tControl()
s tartNewCom ponentS elec tion()
updateCurrentCom ponentSelec tion()

(fro m se le ctio n)

S erviceM ediaHandler
(fro m se le ctio n)

<< Interface>>

S erviceContextClass

program Num ber : int

S erviceContextClass()
addLis tener()
addServiceContentHandler()
c reateP layer()
des troy ()
getAddM ediaLocators()
getKeepM ediaLocators ()
getM ediaLocators()
getM ergedM ediaLocators ()
getP layerHandler()
getP lay ingM ediaLocators ()
getRem oveM ediaLocators ()
getServiceCom ponentLocators()
getServiceContentHandlers()
getServiceContextS tate()
getServiceLocator()
getXletHandler()
getXletLocators()
isA c tiveCom ponents ()
notifyLis teners()
releaseS erviceContextResources ()
rem oveLis tener()
rem oveS erviceContentHandler()
selec t()
selec t()
setAc tiveCom ponents()
setP lay ingM ediaLocators ()
setPresentingService()
setServiceCom ponentLocators()
setServiceContextS tate()
setServiceLocator()
s top()
updateM ediaLocators ()

(fro m se le ctio n)

 56

10.3.6.5 Specification to Implementation Mapping

Specification Implementation Mapping Level
Interfaces
ServiceContentHandler gov.nist.hwabstract.
ServiceContext gov.nist.service.ServiceContextClass
ServiceContextListener Implemented by DASE Application
ServiceMediaHandler gov.nist.hwabstract.
Classes
AlternativeContentEvent
NormalContentEvent
PresentationChangedEvent
PresentationTerminatedEvent
SelectionFailedEvent
SelectPermission
ServiceContextDestroyedEvent
ServiceContextEvent
ServiceContextFactory
ServiceContextPermission
Exceptions
InsufficientResourcesException
InvalidServiceComponentexception
ServiceContextException

Table 9 Service Selection Implemetnation Mapping

10.3.6.6 Implementation to ATSC/MPEG Table Mapping

API Implementation Mapping Tables
ServiceComponent gov.nist.hwabstract.
ServiceContext gov.nist.service.ServiceContextClass
ServiceContextListener Implemented by DASE Application
ServiceMediaHandler gov.nist.hwabstract.
AlternativeContentEvent
NormalContentEvent
PresentationChangedEvent
PresentationTerminatedEvent

Table 10 Service Selection Implementation to Transport Mapping

10.3.6.7 Notes and Issues

10.3.7 Package javax.tv.service.transport

10.3.7.1 Overview

10.3.7.2 Specification to Implementation Mapping

Specification Implementation Mapping Level
Interfaces

 57

Bouquet Not required for ATSC implementation
BouquetCollection Not required for ATSC implementation
Network Not required for ATSC implementation
NetworkCollection Not required for ATSC implementation
Transport
TransportStream
TransportStreamCollection
Classes
BouquetCollectionChangeEvent Not required for ATSC implementation
NetworkCollectionChangeEvent Not required for ATSC implementation

TransportStreamCollectionChangeEvent

Table 11 Transport Implementation Mapping

10.3.7.3 Notes and Issues

javax.tv.service.transport.Network and NetworkCollection are not required for
ATSC implementations. javax.tv.service.transport.Bouquet and BouquetCollection are not
required are not required for ATSC implementations. These classes are part of a generic JavaTv
specification that is used in other specification, such as DVB.

 58

10.4 User and Preference Management

UserRegistry

c reateUser()
deleteUser()
getCurrentUser()
getUser()
getUserNam es()
setCurrentUser()

(f ro m u se r)

<< Interface>>

UserRegistryClass

UserRegistryClass()
addRegis tryListener()
c re ateUser()
deleteUser()
getCu rrentUser()
getRegistryType()
getUser()
getUserNam es()
rem oveRegis t ry List ener()
setCu rrentUser()

(fro m u se r)

UserProfile

auth enti cate()
getNam e()
getP referenc es ()
gran tPermiss ion()
revokePerm ission()

(f ro m u se r)

<< Interface>>

FavoriteChannels

addCha nnel()
getC hannelList()
isFavori te()
removeChannel()

(fro m p re feren ce s)

<< Interface>>

PreferredLanguageClass
(fro m p re feren ce s)

HwP reference s

HwPreferences ()
c reateFavoriteChannelLis t()
exceedsRatingCeiling()
favoriteChannelListE xis ts ()
getFavoriteChannelList()
getPreferredLanguages()
getRatingCeiling()
setPreferredLanguages()
setRatingCeiling()

(fro m h wab stra ct)

P referredLanguage

getLanguage()
setLanguage()

(fro m p re feren ce s)

<< Interface>>

Favori teChannelsClas s
(fro m p re feren ce s)

HwUser

HwUser()
HwUser()
addUser()
getCurrentUser()
getPreferences ()
get UserList ()
isValidUser()
saveUser()
setCurrentUser()

(fro m h wab stra ct)

-currentPreferen ces

-currentUser

UserProfileClass

UserProfileClass ()
authenticate()
get Name()
getPreferences ()
grantPermiss ion()
revokePerm ission()

(fro m u se r)

P referenceRegistry

addPreference()
getPreference()
lis tP references()
removeP reference()

(fro m p re feren ce s)

<< Interface>>

-userPrefs

PreferenceRegistryClass
(fro m p re feren ce s)

Preference

addPre ferenceChang eLis tener()
getP reference Na me()
rem ove Preferenc eChangeLis te ner()

(from p re fe re n ce s)

<< Inter face>>

Figure 27 Class Diagram for User Management

The DASE API defines several interfaces and classes that comprise the Xlet’s view of STB users
and their associated preferences. Figure 27 shows some of the interfaces and implementation classes
associated with User management. User accounts are stored in a Registry whose interface is defined by the
DASE API. In the NIST RI there exists one and only one copy of the User Registry in the JVM. The
accounts themselves are referred to as User Profiles in the DASE specification. Associated with each User
Profile is another Registry that is used to store individual User Preferences. There are four types of User
Preferences: Favorite Channels, Preferred Language, Rating Preference and Personal Data.

A Favorite Channels preference is essentially a list of preferred channels that has a name
associated with it (e.g. “Sports Channels”), and there can exist any number of them in a user’s Preference
Registry. In contrast, the latter 3 Preference types may exist only as a single instance per Preference
Registry. Preferred Language is an ordered list of language codes, sorted in order of preference. Ratings
Preference is a set of “Rating Dimension” and “Rating Value” ordered pairs. Personal Data is a set of
Attribute and Value ordered pairs that are wholly user defined.

Note that the underlying STB may or may not support multiple users with individual preferences. In
either situation at least one “user” account is assumed to exist, and is referred to as the common user or
common settings. The NIST STB simulation environment in fact provides for multiple users, however the

 59

NIST DASE RI code (via the Hardware Abstraction Layer) is designed to function correctly on a STB that
only supports the single user scenario.

Specification Implementation Mapping Level
Interfaces
UserRegistry gov.nist.user.UserRegistryClass
UserProfile gov.nist.user.UserProfileClass
UserPermissions org.atsc.user.UserPermissions
FavoriteChannels gov.nist.preferences.FavoriteChannelsList
PersonalData 6
Preference Implemented by classes that implement sub-interfaces 1
PreferenceChangeListener Implemented by Xlets 1
PreferenceNames No implementation needed
PreferenceRegistry gov.nist.preferences.PreferenceRegistryClass
PreferredLanguage gov.nist.preferences.PreferredLanguageClass
RatingPreference gov.nist.preferences.RatingPreferenceClass

Classes
UserChangeCause org.atsc.user.UserChangeCause 1
UserPermission org.atsc.user.UserPermission 4
UserRegistryEvent org.atsc.user.UserRegistryEvent 1
LanguageScope org.atsc.preferences.LanguageScope 1

PreferenceChangeCause org.atsc.preferences.PreferenceChangeCause 1
PreferenceChangeEvent org.atsc.preferences.PreferenceChangeEvent 1
PreferencePermission org.atsc.preferences.PreferencePermission 4
PreferenceRegistryEvent org.atsc.preferences.PreferenceRegistryEvent 1
Exceptions
InvalidPermissionException org.atsc.user.InvalidPermissionException 1
InvalidUserException org.atsc.user.InvalidUserException 1
InvalidPreferenceException org.atsc.preferences.InvalidPreferenceException 1

Table 12 User and Preference Implementation Mapping
The implementation of User and Preferences management is spread over several packages,

namely: org.atsc.registry, org.atsc.user, org.atsc.preferences, gov.nist.preferences,
and gov.nist.hwabstract. In the sections that follow, the details of the implementation will be
discussed.

10.4.1 User Registry

Upon startup of the NIST STB simulation environment, an object of class
gov.nist.hwabstract.DataManager is instantiated. The NIST RI maintains a single copy of the
DataManager object for use by all Xlets. Xlets that wish to access the User Registry do so by (as defined
in the DASE specification) using the RegistryFactory. The RegistryFactory contains a method to
return a reference to the User, Application, Preference or Resource Registry. It should be noted that the
Resource Registry is not specified by the current version of DASE, and the Resource registry type is
currently a placeholder for future use. Note also that the PreferenceRegistry returned by the Registry
Factory contains the Preferences belonging to the “common user” or “common settings” only.

 60

The UserRegistry object retrieved using the RegistryFactory is obtained from the
DataManager. The first time it is retrieved (after the STB Simulation is started) the UserRegistry object
is instantiated and populated with User and Preference records for each STB user. Thereafter, calls to the
Registry Factory to retrieve the UserRegistry will return a reference to this same single instance.

The UserRegistry maintains a table of UserProfile objects for each STB user. Each
UserProfile in turn points to single PreferenceRegistry that contains the user’s Preferences.
Changes made to a UserProfile in the UserRegistry, their associated Preference Registries, or
individual Preferences contained within those preference registries will result in immediate changes to the
User and Preference information contained in the STB. This synchronization of information between the
UserRegistry and the STB is achieved via classes defined in the HAL that are single threaded. (Note that
this isn’t currently true of the HAL classes, only of the STB ones so there may in fact be a potential for race
condition problems) Thus, all Xlets view User and Preference information in a consistent manner, because
all changes to the underlying STB information are synchronized and confined to a single copy in the STB.

In addition to the storage of User Profile information, the UserRegistry maintains some state
information. The UserRegistry maintains the current login state as the name of the currently logged in
user. The UserRegistry interface provides methods that allow the currently logged in user to be retrieved
or set. In the latter case some sort of authentication procedure would normally be performed, however the
NIST RI currently provides no security mechanisms. Thus, any Xlet can reset the currently logged in user
state of the UserRegistry at any time.

The UserRegistry interface (as specified by DASE) provides a mechanism for asynchronous
notification of Xlets when changes occur to the UserRegistry, namely when UserProfile objects are
added or deleted. A current limitation of the NIST RI is that notification of Xlets occurs in a single thread,
and thus Xlets that fail to respond can block other Xlets from receiving notification events.

10.4.2 User and Preferences Classes in the HAL

The HAL classes HwUser and HwPreferences provide the API implementation classes with a
standardized interface to the STB User and Preference information. In order to populate the
UserRegistry, a single HwUser is instantiated (using the no argument constructor) in order to gain access
to the list of STB usernames. Once this list has been obtained, an HwUser object is instantiated for each
STB user, using each username as an argument to the HwUser constructor.

When HwUser is instantiated, it automatically instantiates a HwPreferences object, to which it
maintains a reference. The HwPreference object, when instantiated, loads all of the STB preference
information for the specified user.

In addition to providing methods to create/delete/modify user and preference information, Class
HwUser provides several utility methods that are used by the UserRegistry class:

setCurrentUser()

getCurrentUser()

getUserList()

isValidUser()

getPreferences()

 61

It is important to note that each instance of HwUser and HwPreferences contains a copy of the
associated STB User and Preference information. Thus, only one copy of each should be instantiated per-
user otherwise inconsistencies may result.

HwPreference objects encapsulate all User Preference information stored in the STB. These
objects are only created when HwUser is instantiated, and maintain a reference back to the HwUser object
that created them. HwPreferences provides methods to create/delete/modify/retrieve favorite services
lists, the preferred language list, or the set of rating ceilings stored in the STB. In addition, class
HwPreferences provides several utility methods that are used by other API classes implementing User
Preferences:

exceedsRatingCeiling()

setRatingCeiling()

getRatingCeiling()

setPreferredLanguage

favoriteChannelListExists()

getFavoriteChannelList()

createFavoriteChannelList()

10.4.3 Preference Registry and Preference

During creation of the UserRegistry object, the HAL routines build a list of HwUser (and their
associated HwPreferences) objects for each STB user, along with a PreferenceRegistry object for
each user.. Utilizing these objects, a Preference interface compliant object is then instantiated for each
individual preference, depending upon its type, added to the user’s PreferenceRegistry. For example, if
a given user has three Favorite Services lists at the STB level – as can be determined using
HwPreferences – then three objects are created of type FavoriteChannelsClass and added to the
user’s PreferenceRegistry.

10.4.3.1 User Profile

After all PreferenceRegistry objects have been created and populated for each STB user, a
UserProfile object is then created for each user using the list of PreferenceRegistry objects in the
constructor. UserProfile objects are then able to return a reference to the user’s
PreferenceRegistry upon demand. Once all UserProfile objects have been instantiated for each
user, the UserRegistry itself is then instantiated using the list of UserProfile objects in the constructor.

10.4.3.2 Event Handling

Events are fired at three separate levels throughout the User and Preferences implementation (as

specified by the DASE API). Events are generated by the UserRegistry, and also by the individual
Preference Registries, and the Preference objects themselves. Xlets can register as listeners at any of the
three levels as desired.

 62

10.4.3.3 User Registry Events

UserRegistryEvent objects are fired under these conditions:

1. A new current User has been set

2. A new User has been added

3. A User has been deleted

Note that event notification is currently implemented in a single thread, and thus there is a potential
for problems if Xlets fail to respond.

10.4.3.4 Preference Registry Events

PreferenceRegistryEvent objects are fired under these conditions:

• A Preferences has been added

• A Preferences has been removed

Note that event notification is currently implemented in a single thread, and thus there is a potential
for problems if Xlets fail to respond

10.4.3.5 Preference Events

Currently the API specifies a class called PreferenceChangeEvent for notifying Xlets of changes
to individual preferences. This class only contains information about which Preference has been affected,
but not what was done with it. In the NIST RI we have implemented the PreferenceChangeEvent class
so that it can carry additional information about what was done to the individual Preference. Currently this is
only done with respect to FavoriteChannels preferences, with two events defined: Channel Added and
Channel Removed.

 63

10.4.3.6 Favorite Channels

10.4.3.7 Rating Preference

10.4.3.8 Preferred Language

10.4.3.9 Personal Data

10.5 Application (Xlet) Implementation

10.5.1 Packages javax.tv.xlet and org.atsc.application

 64

ApplicationComponentPresenterProxy
(from app l i cat io n)

<< Interface>>

ApplicationP roxy

getLocator()
resum e()
s top()
suspend()

(from app l i ca tio n)

<< Interface>>

ApplicationContex t

getDataServiceDescription()
s tateChanged()

(from app l i ca tio n)

<< Interface>>

XletCont ext

getXle tP ro perty ()
not ifyDest roye d()
not ifyP aused ()
re sume Re quest ()

(from xle t)

<< Interface>>
Xlet

d estroyXlet()
i ni tXl et ()
p auseXlet()
s tar tXlet ()

(f rom x le t)

<< Interface>>

Appli cati onCom ponent P res enterP roxy Class

addS tateChangeLis tener()
c learA larm()
getAdminis trativeState()
getA larm Status ()
getAvailabilityS tatus ()
getCurrentS tate()
getCurrentS tatus ()
getLocator()
getOperationalState()
getP roceduralStatus()
getServiceContentLocators ()
getS tatesSupported()
getUsageState()
newState()
resum e()
setLock ()
s top()
suspend()

(from app l i ca tio n)

ApplicationInform ationClass

App li cat ionInform at ion Class ()
getLoc ator ()
getRequiredLeve l()
getRequiredP rofi le()
getTitle()
getV ers io n()
getXlet Na me()
getXl etSt ate()
toStr ing()

(from app l i cat io n)

ServiceContentHandler

get Service Co ntent Locat ors ()

(from se lection)

<< Interface>>

Ap pli cation Co ntex t Cla ss

ApplicationContex tClass ()
getDataServiceDescription()
getServiceContex t()
getXletContainer()
getXletP roperty ()
notifyDes troyed()
notifyPaused()
resum eRequest()
s tateChanged()
toString()

(from app l i ca tio n)

XletThread

XletThread()
appS tateChanged()
des troyXlet()
equals ()
getAppS tate()
getAppS tatesSupported()
getAppS tatus ()
getApplicationInform ation()
getApplicationProxy()
getCurrentS tateName()
getServiceContex t()
getXletContainer()
getXletLocator()
getXletName()
initXlet()
isAc tive()
pauseXlet()
resum eXlet()
run()
setCurrentS tate()

(f rom h wabstract)

-x let

-applicationP roxy

-appli cationInform ation

XletM anager
(from hwabstract)

Figure 28 Xlet/Application Implementation

Specification Implementation Mapping Level
Interfaces
Xlet Implemented by the Xlet. Supported by

gov.nist.hwabstract.XletManager, and
gov.nist.hwabstract.XletThread

 65

XletContext gov.nist.application.ApplicationContextClass
ApplicationComponentPresenterProxy gov.nist.application.

ApplicationComponentPresenterProxyClass

ApplicationProxy gov.nist.application.
ApplicationComponentPresenterProxyClass

ApplicationContext gov.nist.application.ApplicationContextClass

ApplicationInformation gov.nist.application.ApplicationInformationClass

Classes
XletStateChangeException javax.tv.xlet.XletStateChangedException

Application*Exception org.atsc.application.Application*Exception
Application*Cause org.atsc.application.Application*Cause

Table 13 Xlet/Application Implementation Mapping
In the DASE view, an Xlet is a DASE Application. Package org.atsc.application provides

DASE-specific extensions to the Xlet mechanism. For example, interface
org.atsc.ApplicationContext extends the JavaTV interface javax.tv.xlet.XletContentext
in order to allow for DASE state information to be applied to a Xlet. Figure 28 shows the class diagram for
Xlet and DASE Application interfaces and the associated implementation classes. Management of Xlets is
discussed in Section 9.6 where control of the Xlet via the XletThread object is described.

The class diagram shows the relationships between the DASE interfaces and the implementation
classes. The implementation classes ApplicationComponentPresenterProxyClass and
ApplicationContextClass rely on the XletThread class to maintain information associated with the
Xlet, such as the Xlet’s state and Locator. The XletThread class was described in Section 9.6.2.2. An
object of this class is executed in it’s own thread and calls the Xlet’s methods initXlet(),
startXlet(), pauseXlet(), and destroyXlet(). The Xlet can communicate to the Application
registry via the XletContext object, which in a DASE system is an ApplicationContext object. The
implementation class, ApplicationContextClass then communicates the request back to the
Application Registry object, which in the DASE implementation is the XletManager.

When the XletManager loads an Xlet, an XletThread object is created. The constructor of this
class creates the ApplicationComponententPresenterProxyClass,
ApplicationInformationClass and ApplicationContextClass objects. Therefore, there are
single instances of these objects associated with the Xlet. These classes implement their respective DASE
interfaces as can be seen in the class diagram. The XletThread class also creates the XletLocator
object.

Need text and diagrams here to describe how Xlets are managed
within the Service/Data Service contexts.

10.6 Data Broadcast API

10.6.1 Introduction
The org.atsc.data package provides APIs to access the Service Definition Framework (SDF) of

the ATSC T3/S13 Data Broadcast protocol (A/90). Two major components of the SDF are the Data Service

 66

Table (DST) and the Data Event Table (DET). The purpose of the DST is to identify and describe the
components of a data service. The DST gives the type, location, and intended use of the data service. It is
important to note that the current ATSC DASE specification limits the number of concurrent data services
per virtual channel to one. The purpose of the DET is to announce data services. The APIs in this package
focus on obtaining a handle to the data service and retrieving electronic program guide information about the
data service.

10.6.2 Background
A data service is a collection of applications delivered in the DST. Data service applications can be

procedural (Java Xlet) or declarative (XHTML page) applications. Associated with the data service
applications are resources. Resources can be files (data) and streaming data (*as currently defined in the
ARM, later this will be expanded, see table XXX in A/90). The data files are accessed via data carousels
(see section [data carousel]. Figure 29 shows the relationship between virtual channels, data services, data
service applications, and resources.

Figure 29 Data Service Overview
The resources associated with a data service application can be files, XXX, or XXX. Resources are

accessed in the DST by tap loops. A tap id is used by receiver software to reference a resource. A resource
location can be local or remote. A local resource indicates that it is in the current VCT. A remote resource
may be a resource on the Internet, on the same transport stream but different VC, or on a different VC in a
different transport stream.

The Data Broadcast APIs serves two main functions: access to the data service and announcement

of the data services. Section 10.6.3 covers the announcement of data services and section 10.6.6 focuses
on obtaining information about the data services.

10.6.3 Data Service Announcement
Data service announcement allows an Xlet to discover EPG type information about the data

services available in Service objects. This information can be contained in either the EIT or DET. If the data
service is a stand-alone data service, the announcement is made in the DET. If the data service is a data-
enhanced A/V channel, then there are optional ways to announce the data service. One option is to jointly
announce the A/V and data service in the EIT. A second option is to announce the A/V in the EIT and

V C - 2 . 0

V C - 2 . 1

V C - 1 . 0 D a t a S e r v i c e 1 D a t a S e r v i c e 2 D a t a S e r v i c e 3

D a t a S e r v i c e 1

D a t a S e r v i c e 1

N o D a t a S e r v i c e

A p p l i c a t i o n 1 A p p l i c a t i o n 2 A p p l i c a t i o n 3

R e s o u r c e 1

R e s o u r c e 2

R e s o u r c e 3

t 1

t 3

t 4t 2

t 1

t 1

 67

separately announce the data service in the DET. Figure X depicts the various scenarios for the
announcement of data services. Given these options the implementation needs to take this into account.

An Xlet can obtain data service announcement information in the following way. The Service object
obtains a Data Service Details object, which contains a method to access a Data Schedule for the Service.
The Data Schedule contains methods to obtain information about the current and future data events. The
Data Event object contains the elementary data, such as the start and end time of the data service. Figure X
shows the UML diagram for the important interfaces and classes for the data service announcement APIs.

As mentioned the elementary component in data service announcement is the Data Event. Data
Events are supported in the HAL layer by two classes, namely the DataEventTable and the HALDataEvent.
The DataEventTable is the conglomorence of all DETs for all VCs in the broadcast streams. This class
contains methods to access the entire table or to select HALDataEvents for a given VC, or an individual
HALDataEvent. The HALDataEvent represents an instance of the ATSC PSIP defined DET. Access to the
HAL DataEventTable is via source and data ids. Table 14 depicts where the implementation retrieves
information for satisfying a Data Event object.

Method HAL Object MPEG/PSIP Table/Attribute
getStartTime() HALDataEvent DET/start_time
getEndTime() derived None
getDuration() HALDataEvent DET/length_in_seconds
getEventName() HALDataEvent DET/title_text
retrieveDescription() ETT
getRating()
getChannel()

Table 14 Data Event Implemetation to Transport Mapping

10.6.4 Data Broadcast API Implementation Mappings

Specification Implementation Mapping Level
Interfaces
Compatibility gov.nist.data.CompatibilityClass
DataEvent gov.nist.data.DataEventClass
DataEventDescription
DataSchedule gov.nist.data.DataScheduleClass, RetrieveDataEvent,

RetrieveFutureDataEvent, RetrieveFutureDataEvents,
RetrieveNextDataEvent, RetrievePresentDataEvent,
RetrieveDataServiceDescription

DataServiceApplication gov.nist.data.DataServiceApplicationClass
DataServiceDescription gov.nist.data.DataServiceDescriptionClass
DataServiceDetails gov.nist.data.DataServiceDetailsClass
Classes
DataServiceChangeEvent gov.nist.data.DataServiceChangeEvent

Table 15 Data Broadcast Implementation Mapping
Notes from Table 15

• In the ATSC DASE specification, the DataServiceDetails interface extends the JavaTv
ServiceDetails interface. It may not always be the case that a Service includes Data Broadcast

 68

related information. Therefore, the Xlet may choose to retrieve either of these two ServiceDetail
objects. In the NIST implementation, DataServiceDetailsClass extends ServiceDetailsClass (see
gov.nist.service.navigation for more details) and implements DataServiceDetails.

• The implementation of DataSchedule relies on a number of asynchronous helper classes, that are
used to gather a collection of DataEvents. These classes are identified by the prefix Retrieve. See
section X.X on asynchronous data retrieval for more information.

10.6.5 Issues and Notes
Compatibility: The compatibility descriptor may be used to specify data receiver hardware and/or

software requirements for proper acquisition and referencing of a data service. The
org.atsc.data.Compatibilty interface allows access to this information. The descriptor is present in A/90
Table 12.3. The details of the descriptor are shown in Table 6.1 (DSM-CC Compatibility Descriptor). The
interface gives access to the raw content of the descriptor only, the specific fields are not exposed with API
method calls. Table 12.3 has a Compatibility Descriptor for the Data Service Application. This is a DSM-CC
Compatibility Descriptor in Table 6.1. This table then has a loop of the actual Compatibility Descriptor
information.

Questions/Comments:

1. Why doesn’t the Compatibility interface expose the fields of the A/90 compatibility descriptor? The
API wants just the raw bytes to be returned. Where is this?

Resources for a Data Service Application: Not really sure about this. Resources for a Data Service
Application are signaled through the entryPoint, classPath, and Decoder subdriptors (which are part of the
Application Descriptor). EntryPoint identifies data resources to be auto-launched in order to start the
application. ClassPath identifies data resources to go in the ClassPath of a Java Application. Decoder
identifies a resource as a special (Java) decoder.

 69

DataEventTable

DataEventTable()
getDataEvent()
getDataEvents()
getDataEvents()

(from hwab stract)

DataEventClass
(from da ta)

HalDataEvent

Ha lD at aEvent ()
getDat aId ()
getDescr iptors()
getETM Locat ion ()
getE ndTime()
getEndTim eA sDate()
getLen gthInS econds()
getS ourceId()
getS tartTime()
getS t art Tim eA sDate()
getTitleText()

(from hwab stract)

DataScheduleClass
(from da ta)

RetrieveDa taEvent

RetrieveDataEvent()
run()

(from d at a)

RetrieveDataServiceDescription

RetrieveDataServiceDescription()
run()

(from da ta)

Retr ieveFutureD ataEvent

RetrieveFutureDataEvent()
run()

(from da ta)

RetrieveFutureDataEvents

Retr ieveFutureDataEvents()
run ()

(from da ta)

Ret ri eve Nex tD ataEvent

RetrieveNextDataEvent()
run()

(from da ta)

RetrievePresentDa taEvent

RetrievePresentDataEvent()
run()

(from da ta)

DataServiceDetailsClass
(from d at a)

Data ServiceDetails

getDataSchedule()
hasDataService()
retrieveDataServiceDescription()

(from d at a)

<< Interface>>
DataEvent

getChann el()
getDuration()
getE ndTime()
getEventName()
getRat ing ()
getS tartTime()
retrieveDescription()

(from da ta)

<< Interface>>
DataSchedule

add Lis t ener()
remo veLis ten er()
retrieveEvent()
retrie veFut ureEvent()
retrie veFut ureEvents()
retr ie veN ext Event()
retrie vePres entEve nt()

(from da ta)

<< Interface>>

Figure 30 Data Service Announcement

10.6.6 Data Service Access
Data Service access allows an Xlet to gather information about a particular data service. This

information is obtained in the DST. From the API point of view the Xlet accesses this information by using its
context (org.atsc.application.ApplicationContext) to retrieve a DataServiceDescription object. The
DataServiceDescription object abstracts the information of an instance of a DST. The
DataServiceApplication object represents an instance of a data service application. Figure 31 shows the
UML diagram for the important interfaces and classes for the data service access APIs.

The API implementation relies on HAL classes for identifying data services. The HAL
DataServiceList is a collection of all the data services (instances of the DST) across all transport streams.
The link to this into this list is made with the program number attribute in the virtual channel.

DataServiceDescription (A/90 DST table 12.2, data_service_table_bytes, 12.3)

Attribute HAL Transport

 70

Application application loop in A/90 Table 12.3
Title title descriptor
Locator ???
PrivateData raw private data loop in A/90 Table 12.3

10.6.6.1

10.6.6.1.1 DataServiceApplication

Attribute HAL Transport

ApplicationId DBDaseApplicationContext 12.3/App Loop/app_id_byte (app_id_byte
shall be set to a lid: string value to globally
and uniquely identify the application).
app_id_byte loop contain a number of
bytes representing a String URI. Follow
appIdUri in DBDaseApplicationContent

Compatibilities

Title

PrivateData DBApplicationContent 12.3/Application Loop/app_data_byte

ResourceLocator

ResourceNames

Table 16 Data Service Application Implementation to Transport Mapping

10.6.6.1.2 Accessing the Data Services from the HAL

1. Access the HAL DataManager to retrieve the DataServiceList. The DataServiceList contains a list of all

available Data Service Tables in the A/90 sense. For a given Virtual Channel, a Data Service is retrieve
by calling the getDataServices() method. The link is made with the programNumber. This method
returns an array of Data Services for this Virtual Channel. The first element contains the Data Service.
Caution, future versions of the DASE specification may allow more than one Data Service per Virtual
Channel.

2. Accessing the title for the Data Service. The title is accessed in the titleDescriptor, which is a DASE
specific descriptor defined in the ARM document. The descriptor can be present as a descriptor in the
service info descriptor loop in the Data ServiceTable Byte Structure (A/90 Table 12.3). The API
implementation accesses this Descriptor data through the DataService and obtains a Descriptor List.
This list is search for the present of the title descriptor. Future: Maybe write a general procedure for
HAL descriptors.

 71

Figure 31 Data Service Access

10.7 System and TV Graphics API

Com pat ibi lit yClas s

Com patibi lityClass ()
getContent()

(from data)

DataServiceLis t

DataServiceLis t()
getDataServices ()
getDataServices ()

(from hwabstract)

DBApplicationContent

DBApplicationContent()
eq uals ()
ge tAppId()
ge tA ppIdDescript ion()
getP rogram Num ber()
getTs id()
hashCode()

(from hwabstract)

DataServiceDescript ion

addLis tener()
getApplication()
getApplication()
getApplications ()
getP rivateData()
getResourceLocator()
getTit le()
removeLis tener()

(from d at a)

<< Interface>>

DataService

DataService()
getApplication()
getApplications ()
getP rivateData()
getP rogram Num ber()
getSdfP rotocolVers ion()
getServiceInfo()

(from hwabstract)

Dat aS erviceAppli cation

getApplicationID()
getCompatibilit ies()
getP rivateData()
getResourceLocator()
getResourceLocators ()
getResourceNam es()
getTit le()

(from d at a)

<< Interface>>

DataServiceDescript ionClass
(from d at a)

DBDaseAppli cationCont ent

DBDaseApplicationContent()
DBDaseApplicationContent()
c lass$()
get Ap pIdUr i()
getClassId()
getClassPath()
get Co ntentType()
getEntryClasses ()
getLevel()
getP rofile()
getTaskPriority ()
get TaskScope()
getTit le()

(from hwabstract)

DataServiceApplicationClass
(from data)

Com patibility

getContent()

(from data)

<< Interface>>

 72

STBSimManager

getSTBStates()
getDtvDisplay()

(from m anagers)

STBStates

$ POW EROFF : byte
$ POW ERON : byte
$ STANDBY : byte
PowerState : byte
$ SHIFTTUNER0 : int
$ SHIFTTUNER1 : int
$ SHIFTTUNER2 : int
$ SHIFTTUNER3 : int
$ TUNERNOTPRESENT : byte
$ TUNERINUSE : byte
$ TUNERNOTINUSE : byte
TunerState : int

(from da ta typ es)

Dt vD is play

add()
addNoti fy ()
paint ()

(from m anagers)

-theDtvDisplay

DataManager

getRece iverInfo ()

(from hwa bstract)

dtvDisplay

Co ntainer
(from awt)

TVContainer

TVContainer()
getR ootContainer()

(from g raph ics)

Frame
(from awt)

W indow
(from awt)

Receiver

Receiver()
addS ta teC hangeL is t ener()
c le arAlarm()
getAdminis trativeState()
getA larmStatus()
getAvail abili tyStatus()
getCurrentState()
getCurrentStatus()
getInstance()
getOperationalState()
getProceduralSt atus()
getS tatesSupported()
getUsageState()
notifyLis teners()
removeStateChangeListener()
setLock()

(from system)

ReceiverInfo

Sta tesSupporte d : short
StatusesSupported : short
Current Stat e : i nt
C urrent Stat us : i nt

(f rom hwa bstra ct)

Figure 32 System API Implementation

The org.atsc.system.Receiver class is implemented to receive the status of the receiver from
the hardware abstraction layer. The HAL then receives the status from the underlying set-top box
implementation. In the NIST RI, the simulation provides this information as shown in the class diagram in
Figure 32. The HAL DataManager class maps the simulation states from the STBSates class into states
and status needed by the org.atsc.Receiver class.

Classes DtvDisplay and STBStates are part of the STB simulation. The
javax.tv.graphics.TVContainer class also is implemented to receive its information from the HAL.
The STB simulation provides management of a DTV display by allocating an object that implements the
java.awt.Container interface that is needed by TVContainer. The diagram shows that class
DtvDisplay does implement the Container interface by implementing the sub-interface Frame.

10.8 The Networking API

 73

10.9 The Registry API

Registry

addRegistryListener()
getRegistryType()
removeRegistryListener()

(from reg istry)

<<Interface>>
RegistryFactory

Reg ist ryFact ory()
getRegistry()

(from reg istry)

Xlet Manager

addRegistryListener()
getRegistryType()
removeRegistryListener()
deregis terApplication()
getApplicationInformation()
getApplicationInformation()
getApplicationProxies()
getApplicationProxy()
registerApplication()
startApplication()

(f rom h wabstract)

ApplicationRegistry

deregis terApplication()
getApplicationInformation()
getApplicationInformation()
getApplicationProxies()
getApplicationProxy()
registerApplication()
startApplication()

(from appl ic ation)

<<Interface>>
UserRegistry

createUser()
deleteUser()
getCurrentUser()
getUser()
getUserNames()
setCurrentUser()

(fr om user)

<<Interface>>
PreferenceRegistry

addPreference()
getPreference()
listPreferences()
removePreference()

(from pre fe rences)

<<In terface>>

UserRegistryClass

UserRegistryClass()
addRegistryListener()
createUser()
deleteUser()
getCurrentUser()
getRegistryType()
getUser()
getUserNames()
removeRegistryListener()
setCurrentUser()

(fr om user)
PreferenceRegistryClass

PreferenceRegistryClass()
addPreferenc e()
addRegist ryL ist ener()
getPreference()
ge tRegistryType()
li stPre ferences()
removePreference()
removeRegistryListener()

(from pre fe rences)

Figure 33 Registry Implementation

Several registries need to be supported within a DASE environment. The details of the various
registry implementations are described in the appropriate sections. The Application Registry is described in
Section 9.6.2.1. The User Registry is described in Section 10.4.1and the Preference Registry is described in
Section 10.4.3.

10.10 The Document Object Model (DOM) API
The Document Object Model (DOM) API is used to allow Xlets to interact with and control

declarative portions of an application. This API is specified in packages org.atsc.dom,
org.atsc.dom.html, org.atsc.dom.legacy and org.atsc.dom.views. The classes and interfaces

 74

in these packages are based on classes and interfaces defined in package org.w3c.dom and
org.w3c.dom.html.

These ATSC classes and interfaces are not currently implemented in the NIST RI. However, files do
exist for the interfaces and classes in the source tree, but are not compiled as part of the current build
system.

10.11 The Trigger API
The Trigger API is defined in packages org.atsc.trigger. This API is not currently implemented

in the NIST RI although stub code does exist in the source tree.

10.12 HAVi UI

10.12.1 Current Status

Insert content of README here.

10.12.2 Remote Control

10.12.3 Supported Devices

10.12.4 Looks

10.12.5 Widgets

10.13 DAViC

10.13.1 Introduction

10.14 Complete Data Flow Examples

10.14.1 Introduction

The HAL objects communicate with the simulation engine via the public interface of the
STBSimManager class. This interface defines several methods used to access the ATSC tables as well as
the other data, such as users, preferences, etc. One such method, getATSCDataManager() returns an
ATSCDataManager object which provides access to the ATSC table data.

The class ATSCDataManager.ATSCTableSetRequest contains a set of Boolean member
variables. The requester sets to true each member variable for which a ATSC table reference is needed. For
example, ATSCDataManager.ATSCTableSetRequest.vctRequested would be set to true to indicate
that the ATSC Virtual Channel Table is requested. The class ATSCTableSet defines a set of public

 75

member variables that are arrays of the individual ATSC table elements. For example, ATSCTableSet.vct
is a reference to the current ATSC virtual channel table. A NULL reference indicates that the table is not
currently available, or wasn't requested. It is up to the requestor to reconcile what tables were requested
against what references are returned.

Most of the ATSC tables are treated as a synchronized set by the ATSCDataManager. The System

Time Table (STT) is one exception, because it is independent of the other ATSC tables. The Master Guide
Table (MGT), Virtual Channel Table (VCT), Event Information Table (EIT), Extended Text Table (ETT) and
Rating Region Table (RRT) are all updated as a complete set. Therefore, when the HAL requests table data,
all of the listed tables will be synchronized by the call to ATSCDataManager.getATSCTables(). In other
words, the tables returned all belong to the same set. Future calls to getATSCTables() may return newer
versions of the tables than a previous call.

The simulation handles multiple input streams by providing multiple sets of tables to the hardware

abstraction. The tables are not merged into a single database. The hardware abstraction is responsible for
merging all of the data into a single view based on the needs of the DASE API.

Notification of changes to the data is accomplished by using the STB Change events. The client of

the STB simulation can register with the STBSimManager.addSTBChangeListener()method, passing in
an object implementing the STBChangeListener interface. When changes to the data are made by the
table managers, the STBSimManager object will notify all registered listeners by calling method
STBChangeListener.STBChange() with an STBChangeEvent object. Method
STBChangeEvent.getSTBChangeInfo() returns a STBChangeInfo object which indicates which data
items have changed.

The HAL objects obtain a reference to the simulation manager object by calling a native function.

This call is needed because native process STB_main creates the simulation manager object. After
obtaining a reference to the simulation manager, all future access to the simulation database is done via the
simulation manager. The reason for this is to maintain the synchroneity between all of the ATSC tables.

When the DASE application is executed, it first creates a factory object. The purpose of the Factory
is to isolate the application from the specifics of the API implementation (such as class names). A DASE
application uses the factory object as a starting point for communication with the DASE API. Factory classes
are specified in the DASE API document.

The factory class returns an object in the API (SIManager for example). This object obtains a
reference to the HAL data manager by calling method getHwManager()in class
gov.nist.hwabstract.STBEnvironment. This object encapsulates the access to the existing data
manager object and enhances portability of the API.

 76

10.14.2 Service Information Example

SIManager

SIManager()
createServiceCollection()
getIns tance()
getPreferredLanguage()
getRatingDimension()
getService()
getSupportedDimensions()
getTransports()
registerInterest()
retrieveProgramEvent()
retrieveSIE lement()
retrieveServiceDetails()
setPreferredLanguage()

(from naviga tion)

Xlet

destroyXlet()
initXlet()
pauseXlet()
startXlet()

(from xle t)

<<Interface>>

ATSCVirtualChannelTableManager

get CurrentChannelL ist ()
getCurrentDescriptorList()
addChannel()
addD esc riptor()

(from m anagers)

STBEnvironme nt

STBEnvironm ent()
getHwAbstract Manager()
getHw Manager()

(from hwabstract)

DataManager

getVirtualChannelTable()

(f rom hwab stra ct)

ATSCDataManager

getATSCTables()
getAllATSCTables()

(from m anagers)

SIManagerClass
(from navi gation)

S TBSimManager

addSTBChangeListener()
getATSCDataManager()

(from m anagers)

VirtualChannelTable

VirtualChannelTable()
getVirtualChannel()
getVirtualChannel()
getVirtualChannels()

(from hwabstract)

Figure 34 Class Diagram for Service Information Retrieval

Figure 34 shows the UML class diagram for the System Information (SI) Manager to Simulation

interaction. This diagram illustrates the management of the ATSC virtual channel data, and the retrieval of
the data by the DASE application.

 77

 : Xl et : S IM anager :
S IM anagerClass

 :
S TB E nvironm ent

 : DataM anager :
A TS CDataM anager

 :
A TS CV ir tual Channel Tabl eM anager

getIns tance()

< < c reate> >

getHwM anager()

getA TS CTables ()

getCurrentChannelLis t()

c reateS erviceCollec tion()

getV irtualChannelTable()

Figure 35 DASE Service Retrieval

The DASE application first calls static method SIManager.getInstance() that returns a
reference to an object of class SIManagerClass. This reference is a SIManager, the abstract super class
of SIManagerClass. SIManager is defined in the DASE API, and SIManagerClass implements the
SIManager methods.

The SIManagerClass object makes a call to STBEnvironment.getHwManager to obtain a
reference to the HAL data manager. The constructor of STBEnvironment calls native method
getHwAbstractManager() (not shown in the diagram) to retrieve a reference to the hardware abstraction
data manager from STB_main which created the data manager object.

At this point, the DASE application can call the methods of SIManager to retrieve information. In
Figure 35 the application (Xlet) is calling SIManager.createServiceCollection()to obtain a
collection of Services.

The SI manager then calls the HAL DataManager.getVirtualChannelTable() to retrieve the
Virtual Channel table. The DataManager calls simulation object ATSCDataManager.getATSCTables()
to retrieve the current versions of the data tables. This call results in a call to
ATSCVirtualChannelTableManager.getCurrentChannelList() to retrieve the virtual channels.

The SIManagerClass object registers with the STBSimManager as an STBChangeListener
in order to receive notification of updates to the ATSC tables. When a new set of tables arrives, the new
table data is copied in to the respective manager in a synchronized manner and an STBChangeInfo object
is sent to all registered listeners.

 78

11. SECURITY

 79

12. JAVA RUNTIME ENVIRONMENT EXTENSIONS

The Java Runtime Environment (JRE) extensions implement added functionality to several
java.io classes. However, because changes were made to some Java source code that is part of the Sun
Java Development Kit, these changed files are not delivered as part of the NIST RI. This appendix will
describe the changes needed, however.

The following classes have been modified in order to provide the capability to read from Carousel
files:

java.io.FileReader

java.io.FileInputStream

java.io.RandomAccessFile

A new class, CarouselFileConnection has been added to the java.io package. This is a
static class that manages a database of FileDescriptors for Carousel Files. It really is the Carousel File
System: all opened Carousel Files are registered in it. Finally, a new ‘C’ library (with filename jreX) was
created to access the native implementation of some java.io functions.

The general idea was to implement in Java a branched treatment of java.io functions to replace
the previously native implementation. In the case of a regular file, we call the JRE native implementation
through the jreX library; in the case of a carousel file, the code is present in the function itself. Here is an
example for the read() function of java.io.FileInputStream:

The read() method was replaced with:
public int read() {

 if(fileIsCarouselFile) {

 // FileInputStream instantiated

 // around a carousel file.

 // Java implementation

 } else {

 // FileInputStream instantiated

 // around a regular file

 // native implementation

 return readBridge();

 }

}

/* This new native function allows

* to go around the name conflict

* and access old native java.io implementation.

* readBridge is implemented by jreX.c.

*/

public native int readBridge();

With the corresponding implementation in jreX.c:

/*

 80

 * Class: java_io_FileInputStream

 * Method: readBridge

 * Signature: ()I

 */

JNIEXPORT jint JNICALL Java_java_io_FileInputStream_readBridge

 (JNIEnv * env, jobject thisObj) {

 return Java_java_io_FileInputStream_read(env, thisObj);

The same scheme was applied to all functions.

 81

13. APPLICATIONS

This may become a separate document..

13.1 A Prototypical Xlet
This section shows an example Xlet where the minimal functionality is implemented. Such

functionality includes implementing the Xlet interface, notifying the Application Registry of state changes via
the ApplicationContext object, and cleanly exiting the runtime environment.

To be continued….

13.2 The Electronic Program Guide Xlet

One of the targeted applications for the DASE environment is a downloadable Electronic Program
Guide (EPG). An EPG provides viewer information about current and future programming and resembles the
TV Guide page in a newspaper (Figure 36). This information can be displayed as a simple overview of the
programming or as detailed descriptions. An EPG uses data from the Service Information (SI) database. The
SI database is a collection of tables describing current and future programming and is made up of PSIP
tables described earlier. The Service package within the DASE API contains functionality for service
(channel) navigation and selection.

Figure 36 Electronic Program Guide
Figure 37 gives a sequence interaction diagram for an EPG. It gives an overview of how an

application would use the API to obtain SI database information for a program guide. The DASE application
first gets an instance of the SIManager. The SIManager is the access point into the SI database. Once
access to the SI database is established, one approach to building an EPG is to get a list of all available
Services. This can be accomplished with the createServiceCollection() method. If called with no filtering
criterion, this method returns a list of all known Services. The list can be sorted and Services can be
retrieved in order. Next the DASE application would extract the Name (e.g., PBS) and the ServiceNumber
(i.e., the channel number) for each Service in the ServiceCollection. This data is shown in the left-most
column of the example EPG illustrated in Figure 36. Next the application needs to obtain the program events
for each Service. This is accomplished by getting a ServiceDetails objects for every Service by using the
retrieveDetails() method. The ServiceDetails object contains a method to extract the ProgramSchedule for
the Service. The ProgramSchedule contains the list of ProgramEvents. The retrieveCurrentEvent() method
can be used to get the ProgramEvent that is currently showing on that service. ProgramEvent information
includes the name of the program, the starting and ending times, and the program rating. An extended

 82

description of the ProgramEvent details can also be retrieved. This process of retrieving ProgramEvents
would be continued with the method retrieveNextEvent(). Also, the ServiceCollection would be looped
through for subsequent Services by using the getNext() method call of ServiceCollection.

Figure 37 EPG Sequence Interaction Diagram
Figure 38 illustrates how the objects at the API implementation level obtain data from the STB

environment. The example shows a slice of the data gathering process when retrieving ProgramEvents.
Each ProgramSchedule object has an associated HAL virtual channel. The ProgramSchedule obtains a
reference to the HAL DataManager and uses it to get a reference to the HAL EIT. A list of HAL Events is
then obtained by gathering all events for the associated virtual channel. These events are used to create
API level ProgramEvents. The current event is found by using the time of day on the set-top box to search
the HAL event list. Once the event is found a ProgramEvent object is built by the API.

The HAL EIT obtains its data from the STB simulation ATSC EIT manager. The representation of
the EIT at the simulation level is a direct mapping of the ATSC PSIP table. The simulation receives the table
information that is extracted from the DTV bitstream and creates Java objects that are returned to the HAL.
The HAL EIT is responsible for merging data from the various simulation tables.

Figure 38 STB Environment Data Access

getEndTime()

getEventname()

getStartTime()

retrieveCurrentEvent()

getProgramSchedule()

getServiceNumber()

retrieveDetails()

getCurrent()

getName()

toBeginning()

sortByName()

createServiceCollection()

getInstance()

DASE
APP (EPG)
(EPG)

theSIManager:
SIManager

aCollection:
ServiceCollection

oneService:
Service

theDetails:
ServiceDetails

theSchedule:
ProgramSchedule

currentProgram:
ProgramEvent

STB Simulation HAL Implementation

ATSC PSIP tables (e.g.,
VCT)

table
manager

VCT

EIT

etc.

DataManager

HAL VCT

HAL EIT

HAL Event

ProgramSchedule

ProgramEvent

R
E
A
D
E
R

 83

13.3 The Stock Sticker Xlet

13.3.1 Introduction
The Stock Ticker Xlet presents dynamic stock quote information to a television screen in a DASE

environment (see Figure 39). The Xlet uses the Data Carousel APIs to obtain the broadcast data. The data
file is sent as data carousel modules with an associated universal resource identifier (URI). The data
contains the stock symbol, current price, delta, and time of the quote. The Xlet reads this information via the
data carousel API and displays the information to the television screen. The StockTicker Xlet demonstrates
the use of the Data Carousel, Xlet, and Locator APIs.

Symbol Price Change
GE 47.54

WMT
+0.24

AMD
TXN

EBAY

55.75
26.25
39.00 -1.25

+0.7546.50

-2.50
+1.50

Figure 39 Stock Ticker Display

13.3.2 Components
The Stock Ticker Xlet depends on a number of Java class file components. StockTicker and

StockDataModel are the Xlet components. StockStreamer is the data source module. QuoteList is the bridge
module, where StockStreamer writes data, and StockTicker reads it. QuoteFileGen is a utility tool to create
the initial set of stock quotes. Below a summery of each component is given. The interactions between the
components are given in Figure 40. Note that the StockTicker, StockDataModel, and QuoteList comprise the
Xlet components. StockStreamer and QuoteFileGen are utility components in the DASE environment that
are use to stream stock quote and to build stock quote data.

StockTicker: This is the Xlet class that displays the stock ticker. It is responsible for opening and reading
from the carousel file. After successfully reading stock quote data it displays the stock ticker to the television
screen. StockTicker uses the StockDataModel to help create the stock ticker table. The StockTicker Xlet
implements the Xlet and CarouselFileListener interfaces. It receives quote updates via the
CarouselFileListener.

StockDataModel: This class provides the AbstractTableModel for the JTable swing component (note that
HAVi components will replace the swing components in future version of the StockTicker). At this point we
assume that the swing class files are broadcast as part of the StockTicker application.

StockStreamer: This class is responsible from generating a stream of stock quotes. It creates a stream of
QuoteList objects and writes these to the data carousel (FIFO). This is a stand-alone component.

 84

QuoteList: This class is an instance of the stock quote data. QuoteList contains the entire list of quotes.
QuoteList has an inner class (Quote) that represents a single stock quote. A Quote consists of a Symbol
(stock name), a Price (current value), a Delta (change since the last closing price), and the time of the quote.

QuoteFileGen: This class generates the initial set of stock symbols. The StockStreamer reads the created
file.

quotelist

StockStreamer

quotelist
creates

writes reads

reads

QuoteList

FIFO

StockTicker Xlet

StockDataModel

QuoteFileGen

TV Display

Figure 40 StockTicker Components

13.3.3 The StockTicker Xlet
The major tasks of the Stock Ticker are given below.

& Establish a connection to the carousel file.
(Get a LocatorFactory instance
(Create a Locator from the URI
(Transform Locator
(Create CarouselFile object

& Read the stock quote data
(Create a FileInputStream object using the CarouselFile
(Create an ObjectInputStream using the FileInputStream
(Read a QuoteList object from ObjectInputStream
(Obtain an array of Quotes from the QuoteList object

& Build the Stock Ticker table
(Initialize the StockDataModel
(Create the Stock Ticker table.
(Bind the Stock Ticker table to the TVContainer.

 85

& Update the Stock Ticker table.
(Add Xlet to list of data carousel listeners
(Refresh data carousel cache upon receipt of data carousel update
(Read a QuoteList object from ObjectInputStream
(Update StockDataModel with new Quote data

13.3.4 Compiling (Unix)
This Xlet requires that the jreX extensions for the data carousel be compiled in. Do this by including

the --with-jrex flag during configure. In the nist_ri root level directory, use the following commands. Make
sure that the distribution you have includes the jreX extensions.

% make distclean
% configure --with-jrex
% make

13.3.5 Setting up the Run Environment (Unix)

1. Enable the Data Carousel Simulation Runtime Extensions

To enable the data carousel runtime extensions the jreX.jar file must be added to the
STBSIM_CLASSPATH and must be the first file. In addition, the standard Java runtime jar file, rt.jar needs
to be the second file in the STBSIM_CLASSPATH environment variable. A sample setenv
STBSIM_CLASSPATH command is given below.

% setenv STBSIM_CLASSPATH \
${HOME}/nist_ri/simulation/runtime/jreX.jar: \
/usr/java/jre/lib/rt.jar: \
${HOME}/nist_ri/simulation/runtime/stb.jar: \
${HOME}/nist_ri/simulation/runtime/dase.jar: \
${HOME}/nist_ri/simulation/runtime/hwabstract.jar: \
${HOME}/nist_ri/simulation/runtime/devkit.jar: \
/usr/java/jre/lib/jmf.jar

2. Enable the Data Carousel Dynamic Library Path Runtime Extensions

To enable the JRE extensions the STBSIM_LIBRARY environment variable must also be set to
contain the location of the libjreX.so library file and the location of the standard Java runtime libraries. Below
is an example of how to set the STBSIM_LIBRARYPATH.

% setenv STBSIM_LIBRARYPATH \

${HOME}/nist_ri/simulation/runtime:/usr/java/jre/lib/i386

13.3.6 Running (Unix)
Note: all cd commands are relative from the NIST Prototype Implementation root directory (nist_ri).

1. Create quote list file

% java -classpath $CLASSPATH applications.xlets.stock.QuoteFileGen GE 45.32
+0.50 WMT 55.75 +1.50 AMD 26.65 -2.25 TXN 39.00 -1.25 EBAY 46.34 +0.75

Note: This will create a file named quotelist. Use this file as input to StockStreamer.

2. Start DtvSimulator and start RunXlet utility

 86

% cd bin
% ./STB_main -s -x -f /tmp/stockticker.fifo
(tools/simulation/RunXlet

Note: Go to step 3, then come back to the DtvSimulator program in step 4.

3. Start StockStreamer (in another xterm)

% java -classpath $CLASSPATH applications.xlets.stock.StockStreamer -i
quotelist -o /tmp/stockticker.fifo -pat -t 2000

Notes: Make sure the CLASSPATH includes the devkit.jar and stb.jar files. The “-i quotelist” indicates
the file to read the initial quotes from. Make sure quotelist is accessible to the StockStreamer
application. “-pat” indicates to send in a psip program association table. This table will signify a lid, in this
case, lid://nist.gov/data/stockdata. The StockTicker Xlet will use this lid to obtain a locator. The “-t 2000”
indicates an interval (in milliseconds) to send the stock quotes. In this case, it is 2 seconds. “-o
/tmp/stockticker.fifo” indicates the fifo set with DtvSimulator.

4. Start StockTicker Xlet (under the DtvSimulator, RunXlet program)

RunXlet> applications/xlets/stock/StockTicker

Notes: RunXlet tells the Application Manager to load and run the Xlet. Make sure the Xlet’s class files
are located in STBSIM_CLASSPATH. Setting the STBSIM_CLASSPATH as specified above will be
sufficient since it contains devkit.jar.

5. Monitoring and Controlling the StockTicker Xlet (not a required step)

The StockTicker can be paused/restarted/destroyed through the use of the Application Control Panel.
On the simulated remote control, enable the remote control by pressing the “on” button. Then select the
“apps” to start the Application Control Panel. The StockTicker Xlet (or any Xlet) can be control and
monitored with this utility.

13.3.7 StockTicker Xlet Source Code (selected modules)

 87

References

[ATSC:API] ATSC T3/S17 (DASE) API Specification

[ATSC:A65] Advanced Television Systems Committee,

Program and System Information Protocol for Terrestrial

Broadcast and Cable, Document A/65

[ATSC:A90] Advanced Television Systems Committee,

ATSC Data Broadcast Standard, Document A/90

[UML] G. Booch, J. Rumbaugh and I. Jackson,

The Unified Modeling Language User Guide, 1999 Addison Wesley

[USER-GUIDE] NIST DASE Development Environment User’s Guide

 88

14. DISCLAIMER

NOTICE OF SOFTWARE ACKNOWLEDGMENT AND REDISTRIBUTION

The software (named NDRI, for NIST/DASE API Reference Implementation) described herein is
released by the National Institute of Standards and Technology (NIST), an agency of the U.S. Department of
Commerce, Gaithersburg MD 20899, USA. The software presented here is intended to be utilized for
research purposes only and bear no warranty, either express or implied. NIST does not assume legal liability
nor responsibility for a User’s use of a NIST-derived software product or the results of such use.

Please note that within the United States, copyright protection, under Section 105 of the United
States Code, Title 17, is not available for any work of the United States Government and/or for any works
created by United States Government employees. User acknowledges that this software contains work that
was created by NIST employees and is therefore in the public domain and is not subject to copyright. The
User may use, distribute, or incorporate this code or any part of it provided the User acknowledges this via
an explicit acknowledgment of NIST-related contributions to the User’s work. User also agrees to
acknowledge, via an explicit acknowledgment, that User has made modifications or alterations to this
software before redistribution.

	INTRODUCTION
	DEFINITION OF TERMS
	Acronyms and Abbreviations
	Terms

	API IMPLEMENTATION MAPPINGS AND STATUS
	Status Table Guidelines
	DASE API Implementation Status

	DEVELOPMENT ENVIRONMENT
	SYSTEM DESIGN
	Introduction
	NIST DASE Development Environment Components
	Introduction
	Overview of the STB Simulation
	Hardware Abstraction Layer Overview
	DASE API Overview

	THE STB SIMULATION
	Introduction
	The Native Code Components
	The Simulation Control Program
	Program Clock Reference Manager
	Stand-alone mode
	Interface to the Stream Parser
	Interface to Clients
	Test Feeder

	The Bitstream Parser

	Java Components
	The Manager Classes
	Input Stream Parsers
	The Datatype Classes
	Other Classes

	PSIP Table Management in the Simulation
	PSIP Table Classes
	Manager Classses
	ATSCDataManager
	ATSCEventInformationTableManager
	ATSCMasterGuideTableManager
	ATSCRatingRegionTablesManager
	ATSCVirtualChannelTableManager
	ATSCExtendedTextTableManager

	Datatype Classes
	ATSCDatatype
	ATSCEventInformation
	ATSCExtendedTextMessage
	ATSCMasterGuideTableEntry
	ATSCRatingRegionTable
	ATSCVirtualChannel

	Virtual Channel Table Example

	Data Broadcast Management
	Data Broadcast Overview
	Simulation Management of Data Broadcast
	ATSCDataServiceTablesManager
	ATSCDataServiceTable
	ATSCDataEventTableManager
	ATSCDataEvent
	ATSCUserToNetworkDownloadManager
	ATSCUserToNetworkDownloadModule

	JMF
	Hardware Simulation
	MPEGDecoderManager
	PCRManagerPullSourceStream
	DataSource
	Handler
	DAVIC Controls

	REAL-TIME EMULATION
	COMMERCIAL STB
	HARDWARE ABSTRACTION LAYER
	Introduction
	STB Environment
	HAL Data Manager
	MPEG/PSIP Table Management
	Introduction
	Virtual Channels
	Data Services
	Event Information
	Rating Information
	Descriptors
	Extended Text Messages

	Data Broadcast
	Description of Data Broadcast Classes in the HAL
	CarouselManager
	CarouselModule
	DBDaseApplicationContent
	DBApplicationContentFactory
	DBApplicationContent
	DBApplicationManager

	Application Management
	Introduction
	Xlet Management Classes
	XletManager
	XletThread
	XletClassLoader
	XletClassData

	Xlet Resource Loading

	JMF Player
	Abstract Decoder
	Java Interfaces

	API IMPLEMENTATION
	Locators
	The Management API
	Service APIs
	Overview
	Asynchronous Service Information Retrieval
	Package javax.tv.service
	Package javax.tv.service.guide
	Guide UML Diagram
	Specification to Implementation Mapping
	Implementation to ATSC/MPEG Table Mapping

	Package javax.tv.service.navigation
	Overview
	Specification to Implementation Mapping

	Package javax.tv.service.selection
	Overview
	Access to the JMF Player
	Policy and Issues
	Service Selection UML Diagrams
	Specification to Implementation Mapping
	Implementation to ATSC/MPEG Table Mapping
	Notes and Issues

	Package javax.tv.service.transport
	Overview
	Specification to Implementation Mapping
	Notes and Issues

	User and Preference Management
	User Registry
	User and Preferences Classes in the HAL
	Preference Registry and Preference
	User Profile
	Event Handling
	User Registry Events
	Preference Registry Events
	Preference Events
	Favorite Channels
	Rating Preference
	Preferred Language
	Personal Data

	Application (Xlet) Implementation
	Packages javax.tv.xlet and org.atsc.application

	Data Broadcast API
	Introduction
	Background
	Data Service Announcement
	Data Broadcast API Implementation Mappings
	Issues and Notes
	Data Service Access
	
	DataServiceApplication
	Accessing the Data Services from the HAL

	System and TV Graphics API
	The Networking API
	The Registry API
	The Document Object Model (DOM) API
	The Trigger API
	HAVi UI
	Current Status
	Remote Control
	Supported Devices
	Looks
	Widgets

	DAViC
	Introduction

	Complete Data Flow Examples
	Introduction
	Service Information Example

	SECURITY
	JAVA RUNTIME ENVIRONMENT EXTENSIONS
	APPLICATIONS
	A Prototypical Xlet
	The Electronic Program Guide Xlet
	The Stock Sticker Xlet
	Introduction
	Components
	The StockTicker Xlet
	Compiling (Unix)
	Setting up the Run Environment (Unix)
	Running (Unix)
	StockTicker Xlet Source Code (selected modules)

	DISCLAIMER

